To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3805 Accepted Submission(s): 1816
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
解题报告:题意:求一个二维矩阵的最大子矩阵的和(最大子段和的推广),方法就是把二维的转化为一维的,
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
const int N= 110;
int a[N][N],sum[N];
int main()
{
//freopen("1002.txt","r",stdin);
int n,i,j,k,sum1,max,ans;
while(scanf("%d",&n)!=EOF)
{
memset(a,0,sizeof(a));
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&a[i][j]);
}
}
ans=-99999;
for(i=1;i<=n;i++)
{
memset(sum,0,sizeof(sum));
for(j=i;j<=n;j++)//将二维压缩成一维的
{
for(k=1;k<=n;k++)
{
sum[k]+=a[j][k];
}
max=-99999;
sum1=0;
for(k=1;k<=n;k++)//求最大值
{
if(sum1>0)
{
sum1+=sum[k];
}
else
{
sum1=sum[k];
}
if(max<sum1)
{
max=sum1;
}
}
if(ans<max)
{
ans=max;
}
}
}
printf("%d\n",ans);
}
}