• 学习笔记TF041:分布式并行


    TensorFlow分布式并行基于gRPC通信框架,一个master负责创建Session,多个worker负责执行计算图任务。

    先创建TensorFlow Cluster对象,包含一组task(每个task一台独立机器),分布式执行TensorFlow计算图。一个Cluster切分多个job,一个job是一类特定任务(parameter server ps,worker),每个job可以包含多个task。每个task创建一个server,连接到Cluster,每个task执行在不同机器。也可以一台机器执行多个task(不同GPU)。tf.train.ClusterSpec初始化Cluster对象,初始化信息是Python dict,tf.train.ClusterSpec({"ps":["192.168.233.201:2222"],"worker":["192.168.233.202:2222","192.168.233.203:2222"]}),代表一个parameter server和两个worker,分别在三个不同机器上。每个task,定义自己身份,如server=tf.train.Server(cluster,job_name="ps",task_index=0),机器job定义ps第0台机器。程序中with tf.device("/job:worker/task:7"),限定Variable存放在哪个task或机器。

    TensorFlow分布式模式:In-graph replication模型并行,模型计算图不同部分放在不同机器执行;Between-graph replication数据并行,每台机器相同计算图,计算不同batch数据。异步并行,每台机器独立计算梯度,计算完更新到parameter server,不等其他机器。同步并行,等所有机器都完成梯度计算,多个梯度合成统一更新模型参数。同步并行训练,loss下降速度更快,可达到最大精度更高,同步并行速度取决最慢机器,设备速度一致,效率较高。

    TensorFlow实现包含1个paramter server、2个worker分布式并行训练程序,MNIST手写数据识别任务示例。写一个完整Python文件,在不同机器不同task执行。载入依赖库。

    tf.app.flags定义标记,命令行执行TensorFlow设置参数。命令行指定参数被TensorFlow读取,转flags。设定数据储存目录data_dir默认/tmp/mnist-data,隐藏节点数默认100,训练最大步数train_steps默认1000000,batch_size默认100,学习速率默认0.01。

    设定是否使用同步并行标记sync_replicas默认False,命令行执行时可设True开户同步并行。设定需要累计梯度个数更新模型值默认None,代表同步并行积累多少个batch梯度再进行参数更新,设None 为worker数量,所有worker完成一个batch训练后再更新模型参数。

    定义ps地址,默认192.168.233.201:2222,根据集群实际情况配置。worker地址设置192.168.233.202:2222和192.168.233.203:2222.设置job_name和task_index FLAG。

    flags.FLAGS直接命名FLAGS,简化使用。设置图片尺寸IMAGE_PIXELS 28。

    编写程序主函数main,input_data.read_data_sets下载读取MNIST数据集,设置one_hot编码格式。检测命令行输入参数,确保job_name和task_index两个必备参数。显示job_name和task_index,ps、worker所有地址解析成列表ps_spec、worker_spec。

    计算总共worker数量,tf.train.ClusterSpec生成TensorFlow Cluster对象,传入参数ps地址信息和worker地址信息。tf.train.Server创建当前机器server,连接Cluster。如当前节点是parameter server,不进行后续操作,server.join等待worker工作。

    判断当前机器是否主节点,task_index是否0。定义当前机器worker_device,格式"job:worker/task:0/gpu:0"。多台机器,每台机器1块GPU,总共需要机器数量worker。如一台机器多GPU,一个task管理多个GPU或多个task分别管理。tf.train.replica_device_setter()设置worker资源,worker_device计算资源,ps_device存储模型参数资源。replica_device_setter将模型参数部署在独立ps服务器"/job:ps/cpu:0",训练操作部署在"/job:worker/task:0/gpu:0",本机GPU。创建记录全局训练步数变量global_step。

    定义神经网络模型,tf.truncated_normal初始化权重,tf.zeros初始化偏置,创建输入 placeholder,tf.nn.xw_plus_b输入矩阵乘法、偏置操作,ReLU激活函数处理,得到第一个隐层输出hid。tf.nn.xw_plus_b、tf.nn.softmax对第一层输出hid处理,得到网络最终输出y。最后计算损失cross_entropy,定义优化器Adam。

    判断是否设置同步训练模式sync_replicas,如果同步模型,先获取同步更新模型参数需要副本数replicas_to_aggregate;如果没有单独设置,worker数作默认值。tf.train.SyncReplicasOptimizer创建同步训练优化器,对原有优化器扩展。传入原有优化器及其他参数(replicas_to_aggregate、total_num_replicas、replica_id),原有优化器改造为同步分布式训练版本。用普通(异步)或同步优化器优化损失cross_entropy。

    同步训练模式,主节点,opt.get_chief_queue_runner创建队列执行器,opt.get_init_tokens_op创建全局参数初始化器。

    生成本地参数初始化操作init_op,创建临时训练目录,tf.train_Supervisor创建分布式训练监督器,传入参数is_chief、train_dir、init_op。Supervisor管理task参与到分布式训练。

    设置Session参数,allow_soft_placement设True,代表操作在指定device不能执行时转到其他device执行。

    如果主节点,显示初始化Session,其他节点显示等待主节点初始化操作。执行sv.prepate_or_wait_for_session()。

    如果处于同步模型主节点,sv.start_queue_runners执行队列化执行器chief_queue_runner,执行全局参数初始化器init_tokens_op。

    训练过程,记录worker执行训练启动时间,初始化本地训练步数local_step,进入训练循环。每步训练,从nnist.train.next_batch读取一个batch数据,生成feed_dict,调train_step执行训练。当全局训练步数达到预设最大值,停止训练。

    训练结束,展示总训练时间,在验证数据上计算预测结果损失cross_entropy,展示。

    在主程序执行tf.app.run()启动main函数,全部代码保存到distributed.py文件。3台不同机器分别执行distributed.py启动3个task,每次执行distributed.py,传入job_name、task_index指定worker身份。

    分别在三台机器192.168.233.201、192.168.233.202、192.168.233.203执行python distributed.py。

    同步模式,加上--sync_replicas=True。global_step,异步时,全局步数是所有worker训练步数和,同步时是多少轮并行训练。



        #from __future__ import absolute_import
        #from __future__ import division
        #from __future__ import print_function
        import math
        #import sys
        import tempfile
        import time
        import tensorflow as tf
        from tensorflow.examples.tutorials.mnist import input_data
        flags = tf.app.flags
        flags.DEFINE_string("data_dir", "/tmp/mnist-data",
                            "Directory for storing mnist data")
        #flags.DEFINE_boolean("download_only", False,
        #                     "Only perform downloading of data; Do not proceed to "
        #                     "session preparation, model definition or training")
        flags.DEFINE_integer("task_index", None,
                             "Worker task index, should be >= 0. task_index=0 is "
                             "the master worker task the performs the variable "
                             "initialization ")
        #flags.DEFINE_integer("num_gpus", 2,
        #                     "Total number of gpus for each machine."
        #                     "If you don't use GPU, please set it to '0'")
        flags.DEFINE_integer("replicas_to_aggregate", None,
                             "Number of replicas to aggregate before parameter update"
                             "is applied (For sync_replicas mode only; default: "
                             "num_workers)")
        flags.DEFINE_integer("hidden_units", 100,
                             "Number of units in the hidden layer of the NN")
        flags.DEFINE_integer("train_steps", 1000000,
                             "Number of (global) training steps to perform")
        flags.DEFINE_integer("batch_size", 100, "Training batch size")
        flags.DEFINE_float("learning_rate", 0.01, "Learning rate")
        flags.DEFINE_boolean("sync_replicas", False,
                             "Use the sync_replicas (synchronized replicas) mode, "
                             "wherein the parameter updates from workers are aggregated "
                             "before applied to avoid stale gradients")
        #flags.DEFINE_boolean(
        #    "existing_servers", False, "Whether servers already exists. If True, "
        #    "will use the worker hosts via their GRPC URLs (one client process "
        #    "per worker host). Otherwise, will create an in-process TensorFlow "
        #    "server.")
        flags.DEFINE_string("ps_hosts","192.168.233.201:2222",
                            "Comma-separated list of hostname:port pairs")
        flags.DEFINE_string("worker_hosts", "192.168.233.202:2223,192.168.233.203:2224",
                            "Comma-separated list of hostname:port pairs")
        flags.DEFINE_string("job_name", None,"job name: worker or ps")
        FLAGS = flags.FLAGS
        IMAGE_PIXELS = 28
        def main(unused_argv):
          mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
        #  if FLAGS.download_only:
        #    sys.exit(0)
          if FLAGS.job_name is None or FLAGS.job_name == "":
            raise ValueError("Must specify an explicit `job_name`")
          if FLAGS.task_index is None or FLAGS.task_index =="":
            raise ValueError("Must specify an explicit `task_index`")
          print("job name = %s" % FLAGS.job_name)
          print("task index = %d" % FLAGS.task_index)
          #Construct the cluster and start the server
          ps_spec = FLAGS.ps_hosts.split(",")
          worker_spec = FLAGS.worker_hosts.split(",")
          # Get the number of workers.
          num_workers = len(worker_spec)
          cluster = tf.train.ClusterSpec({
              "ps": ps_spec,
              "worker": worker_spec})
          #if not FLAGS.existing_servers:
            # Not using existing servers. Create an in-process server.
          server = tf.train.Server(
              cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
          if FLAGS.job_name == "ps":
            server.join()
          is_chief = (FLAGS.task_index == 0)
      
        #  if FLAGS.num_gpus > 0:
        #    if FLAGS.num_gpus < num_workers:
        #      raise ValueError("number of gpus is less than number of workers")
        #    # Avoid gpu allocation conflict: now allocate task_num -> #gpu 
        #    # for each worker in the corresponding machine
        #    gpu = (FLAGS.task_index % FLAGS.num_gpus)
        #    worker_device = "/job:worker/task:%d/gpu:%d" % (FLAGS.task_index, gpu)
        #  elif FLAGS.num_gpus == 0:
        #    # Just allocate the CPU to worker server
        #    cpu = 0
        #    worker_device = "/job:worker/task:%d/cpu:%d" % (FLAGS.task_index, cpu)
        #  # The device setter will automatically place Variables ops on separate
        #  # parameter servers (ps). The non-Variable ops will be placed on the workers.
        #  # The ps use CPU and workers use corresponding GPU
      
          worker_device = "/job:worker/task:%d/gpu:0" % FLAGS.task_index
          with tf.device(
              tf.train.replica_device_setter(
                  worker_device=worker_device,
                  ps_device="/job:ps/cpu:0",
                  cluster=cluster)):
            global_step = tf.Variable(0, name="global_step", trainable=False)
            # Variables of the hidden layer
            hid_w = tf.Variable(
                tf.truncated_normal(
                    [IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
                    stddev=1.0 / IMAGE_PIXELS),
                name="hid_w")
            hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
            # Variables of the softmax layer
            sm_w = tf.Variable(
                tf.truncated_normal(
                    [FLAGS.hidden_units, 10],
                    stddev=1.0 / math.sqrt(FLAGS.hidden_units)),
                name="sm_w")
            sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
            # Ops: located on the worker specified with FLAGS.task_index
            x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS])
            y_ = tf.placeholder(tf.float32, [None, 10])
            hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
            hid = tf.nn.relu(hid_lin)
            y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
            cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
            opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
            if FLAGS.sync_replicas:
              if FLAGS.replicas_to_aggregate is None:
                replicas_to_aggregate = num_workers
              else:
                replicas_to_aggregate = FLAGS.replicas_to_aggregate
              opt = tf.train.SyncReplicasOptimizer(
                  opt,
                  replicas_to_aggregate=replicas_to_aggregate,
                  total_num_replicas=num_workers,
                  replica_id=FLAGS.task_index,
                  name="mnist_sync_replicas")
            train_step = opt.minimize(cross_entropy, global_step=global_step)
            if FLAGS.sync_replicas and is_chief:
              # Initial token and chief queue runners required by the sync_replicas mode
              chief_queue_runner = opt.get_chief_queue_runner()
              init_tokens_op = opt.get_init_tokens_op()
            init_op = tf.global_variables_initializer()
            train_dir = tempfile.mkdtemp()
            sv = tf.train.Supervisor(
                is_chief=is_chief,
                logdir=train_dir,
                init_op=init_op,
                recovery_wait_secs=1,
                global_step=global_step)
            sess_config = tf.ConfigProto(
                allow_soft_placement=True,
                log_device_placement=False,
                device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index])
            # The chief worker (task_index==0) session will prepare the session,
            # while the remaining workers will wait for the preparation to complete.
            if is_chief:
              print("Worker %d: Initializing session..." % FLAGS.task_index)
            else:
              print("Worker %d: Waiting for session to be initialized..." %
                FLAGS.task_index)
        #    if FLAGS.existing_servers:
        #      server_grpc_url = "grpc://" + worker_spec[FLAGS.task_index]
        #      print("Using existing server at: %s" % server_grpc_url)
        #
        #      sess = sv.prepare_or_wait_for_session(server_grpc_url, config=sess_config)
        #    else:
            sess = sv.prepare_or_wait_for_session(server.target,
                                                config=sess_config)
            print("Worker %d: Session initialization complete." % FLAGS.task_index)
            if FLAGS.sync_replicas and is_chief:
              # Chief worker will start the chief queue runner and call the init op
              print("Starting chief queue runner and running init_tokens_op")
              sv.start_queue_runners(sess, [chief_queue_runner])
              sess.run(init_tokens_op)
            # Perform training
            time_begin = time.time()
            print("Training begins @ %f" % time_begin)
            local_step = 0
            while True:
              # Training feed
              batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
              train_feed = {x: batch_xs, y_: batch_ys}
              _, step = sess.run([train_step, global_step], feed_dict=train_feed)
              local_step += 1
              now = time.time()
              print("%f: Worker %d: training step %d done (global step: %d)" %
                    (now, FLAGS.task_index, local_step, step))
              if step >= FLAGS.train_steps:
                break
            time_end = time.time()
            print("Training ends @ %f" % time_end)
            training_time = time_end - time_begin
            print("Training elapsed time: %f s" % training_time)
            # Validation feed
            val_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
            val_xent = sess.run(cross_entropy, feed_dict=val_feed)
            print("After %d training step(s), validation cross entropy = %g" %
                  (FLAGS.train_steps, val_xent))
        if __name__ == "__main__":
          tf.app.run()

    参考资料:
    《TensorFlow实战》

    欢迎付费咨询(150元每小时),我的微信:qingxingfengzi

  • 相关阅读:
    斐波拉切数列学习笔记
    BPC全面预算管理学习专题(SAP)
    AjaxPro新发现错误处理
    漂亮的页面向导和Tab插件(Jquery)
    从SAP BPC中Entity维设计的理念考虑Web程序中类似文档库之类的设计该考虑的东西
    VBA之Range,cells,offset,end 的区别(转)
    Jquery.Cookie使用方法(转)
    机场市场采购网(www.caigo365.com)亮点介绍电子书(杂志)的应用
    showModalDialog()showModelessDialog()方法使用详解(转)
    微软依赖注入Unity(转)
  • 原文地址:https://www.cnblogs.com/libinggen/p/7399307.html
Copyright © 2020-2023  润新知