• OpenTSDB简单使用


    ################################################################
    创建metric:
    两种方式,选择其一即可。不管何种导入方式都必须先设置metric。 
    1. 事先在opentsdb中创建metric。如生成两个名为mymetric.data_1和mymetric.data_2的metric。如下:
    tsdb mkmetric mymetric.data_1 mymetric.data_21
    
    2.设置自动生成metric。修改opentsdb.conf设置:
    tsd.core.auto_create_metrics = true
    
    
    ################################################################
    数据写入:
    1.telnet方式
    telnet localhost 4242
    put sys.cpu.user 1436333416 23 host=web01 user=10001
    
    2.API方式
    URL:
    http://116.196.114.194:4242/api/put?summary
    参数:
    [
    {
    "metric": "sys.cpu.nice",
    "timestamp": 1502190111,
    "value": 18,
    "tags": {
    "host": "web01",
    "dc": "lga"
    }
    },
    {
    "metric": "sys.cpu.nice",
    "timestamp": 1502190171,
    "value": 26,
    "tags": {
    "host": "web02",
    "dc": "lga"
    }
    }
    ]
    返回:
    {
    "success": 2,
    "failed": 0
    }
    
    3.import方式,批量导入
    导入文件格式:
    [root@test0926ryc001-master2 test]# cat opentsdb.txt 
    mymetric.test.data 1479303678 0.841470984808 host=xyd_host
    mymetric.test.data 1479303679 0.909297426826 host=xyd_host
    mymetric.test.data 1479303680 0.14112000806 host=xyd_host
    mymetric.test.data 1479303681 -0.756802495308 host=xyd_host
    mymetric.test.data 1479303682 -0.958924274663 host=xyd_host
    执行命令:
    /root/src/opentsdb-2.4.0RC2/build/tsdb import --config=/root/src/opentsdb-2.4.0RC2/opentsdb.conf opentsdb.txt
    
    ################################################################
    数据查询:
    一、返回metric=test的最近10秒的所有时序数据
    
    1.Get方式:
    /api/query?start=10s-ago&m=test
    2.Post方式:
    {
    "start": "10s-ago",
    "queries": [{
    "aggregator": "none",
    "metric": "test"
    }]
    }
    
    返回:
    [
        {
            "metric": "test",
            "tags": {
                "device": "D47899",
                "label": "6015",
            },
            "aggregateTags": [],
            "dps": {
                "1525343027": 26.26,
                "1525343032": 25.32
            }
        },
        {
            "metric": "test",
            "tags": {
                "device": "D47899",
                "label": "6019",
            },
            "aggregateTags": [],
            "dps": {
                "1525343027": 25.32,
                "1525343032": 26.74
            }
    },
    ……
        {
            "metric": "test",
            "tags": {
                "device": "D47899",
                "label": "6010",
            },
            "aggregateTags": [],
            "dps": {
                "1525343027": 26.8,
                "1525343032": 25.75
            }
        }
    ]
    二、使用filters实现tags条件查询:
    1.Get方式:
    /api/query?start=10s-ago&m=sum:test{device=*,label=1001|1002}
    注:device和label都为tag
    2.Post方式:
    {
        "start": "10s-ago",
        "queries": [
            {
                "aggregator": "sum",
                "metric": "test",
                "filters": [
                    {
                       "type":"wildcard",
                       "tagk":"device",
                       "filter":"*",
                       "groupBy":true
                    },
                    {
                       "type":"literal_or",
                       "tagk":"label",
                       "filter":"1001|1002",
                       "groupBy":true
                    }
                ]
            }
        ]
    }
    返回:
    [
        {
            "metric": "test",
            "tags": {
                "label": "1001",
                "device": "A11223",
                "status": "0"
            },
            "aggregateTags": [],
            "dps": {
                "1525344862": 24.76,
                "1525344867": 24.98
            }
        },
        {
            "metric": "app.services.temperature",
            "tags": {
                "label": "1002",
                "device": "A11224",
                "status": "0"
            },
            "aggregateTags": [],
            "dps": {
                "1525344862": 25.75,
                "1525344867": 24.74
            }
        }
    ]
    三、对每个时序最近两小时的数据点按小时分组计算(使用downsample)
    1.Get方式:
    /api/query?start=2h-ago&m=sum:1h-count:test{device=*,label=1001|1002}
    2.Post方式:
    {
        "start": "2h-ago",
        "queries": [
            {
                "aggregator": "sum",
                "metric": "test",
                "downsample": "1h-count", 
                "filters": [
                    {
                       "type":"literal_or",
                       "tagk":"device",
                       "filter":"*",
                       "groupBy":true
                    },
                    {
                       "type":"literal_or",
                       "tagk":"label",
                       "filter":"1001|1002",
                       "groupBy":true
                    }
                ]
            }
        ]
    }
    返回:
    [
        {
            "metric": "test",
            "tags": {
                "label": "1001",
                "device": "A11223",
                "status": "0"
            },
            "aggregateTags": [],
            "dps": {
                "1525341600": 720,
                "1525345200": 91
            }
        },
        {
            "metric": "test",
            "tags": {
                "label": "1002",
                "device": "A11224",
                "status": "0"
            },
            "aggregateTags": [],
            "dps": {
                "1525341600": 720,
                "1525345200": 91
            }
        }
    ]
    
     
    
    参考文档:
    http://opentsdb.net/docs/build/html/user_guide/index.html
    https://blog.csdn.net/xsdxs/article/details/53882504
    http://blog.51cto.com/1196740/2164968
  • 相关阅读:
    MySql 学习之 一条更新sql的执行过程
    MySql 学习之 一条查询sql的执行过程
    VUE基本介绍
    ESMAScript6基本介绍
    npm
    tensorflow2.0 评估函数
    网页引入mathjax,latex
    Veno File Manager
    tensorflow 测量工具,与自定义训练
    tensorflow自定义网络结构
  • 原文地址:https://www.cnblogs.com/libin2015/p/9717295.html
Copyright © 2020-2023  润新知