• 干货 | Elasticsearch Reindex性能提升10倍+实战(转)


    转自 https://blog.csdn.net/laoyang360/article/details/81589459

    1、reindex的速率极慢,是否有办法改善?
    以下问题来自社区:https://elasticsearch.cn/question/3782

    问题1:reindex和snapshot的速率极慢,是否有办法改善?
    reindex和snapshot的速率比用filebeat或者kafka到es的写入速率慢好几个数量级(集群写入性能不存在瓶颈),reindex/snapshot的时候CPU还是IO使用率都很低,是不是集群受什么参数限制了reindex和snapshot的速率?
    reindex不管是跨集群还是同集群上都很慢,大约3~5M/s的索引速率,会是什么原因导致的?

    问题2:数据量几十个G的场景下,elasticsearch reindex速度太慢,从旧索引导数据到新索引,当前最佳方案是什么?
    2、Reindex简介
    5.X版本后新增Reindex。Reindex可以直接在Elasticsearch集群里面对数据进行重建,如果你的mapping因为修改而需要重建,又或者索引设置修改需要重建的时候,借助Reindex可以很方便的异步进行重建,并且支持跨集群间的数据迁移。比如按天创建的索引可以定期重建合并到以月为单位的索引里面去。当然索引里面要启用_source。

    POST _reindex
    {
    "source": {
    "index": "twitter"
    },
    "dest": {
    "index": "new_twitter"
    }
    }
    3、原因分析
    reindex的核心做跨索引、跨集群的数据迁移。
    慢的原因及优化思路无非包括:

    1)批量大小值可能太小。
    需要结合堆内存、线程池调整大小;
    2)reindex的底层是scroll实现,借助scroll并行优化方式,提升效率;
    3)跨索引、跨集群的核心是写入数据,考虑写入优化角度提升效率。
    4、Reindex提升迁移效率的方案
    4.1 提升批量写入大小值
    默认情况下,_reindex使用1000进行批量操作,您可以在source中调整batch_size。

    POST _reindex
    {
    "source": {
    "index": "source",
    "size": 5000
    },
    "dest": {
    "index": "dest",
    "routing": "=cat"
    }
    }
    批量大小设置的依据:

    (1)使用批量索引请求以获得最佳性能。
    批量大小取决于数据、分析和集群配置,但一个好的起点是每批处理5-15 MB。
    注意,这是物理大小。文档数量不是度量批量大小的好指标。例如,如果每批索引1000个文档,:
    1)每个1kb的1000个文档是1mb。
    2)每个100kb的1000个文档是100 MB。
    这些是完全不同的体积大小。
    (2)逐步递增文档容量大小的方式调优。
    1)从大约5-15 MB的大容量开始,慢慢增加,直到你看不到性能的提升。然后开始增加批量写入的并发性(多线程等等)。
    2)使用kibana、cerebro或iostat、top和ps等工具监视节点,以查看资源何时开始出现瓶颈。如果您开始接收EsRejectedExecutionException,您的集群就不能再跟上了:至少有一个资源达到了容量。要么减少并发性,或者提供更多有限的资源(例如从机械硬盘切换到ssd固态硬盘),要么添加更多节点。
    4.2 借助scroll的sliced提升写入效率
    Reindex支持Sliced Scroll以并行化重建索引过程。 这种并行化可以提高效率,并提供一种方便的方法将请求分解为更小的部分。

    sliced原理(from medcl)
    1)用过Scroll接口吧,很慢?如果你数据量很大,用Scroll遍历数据那确实是接受不了,现在Scroll接口可以并发来进行数据遍历了。
    2)每个Scroll请求,可以分成多个Slice请求,可以理解为切片,各Slice独立并行,利用Scroll重建或者遍历要快很多倍。

    slicing使用举例
    slicing的设定分为两种方式:手动设置分片、自动设置分片。
    手动设置分片参见官网。
    自动设置分片如下:

    POST _reindex?slices=5&refresh
    {
    "source": {
    "index": "twitter"
    },
    "dest": {
    "index": "new_twitter"
    }
    }

    slices大小设置注意事项:
    1)slices大小的设置可以手动指定,或者设置slices设置为auto,auto的含义是:针对单索引,slices大小=分片数;针对多索引,slices=分片的最小值。
    2)当slices的数量等于索引中的分片数量时,查询性能最高效。slices大小大于分片数,非但不会提升效率,反而会增加开销。
    3)如果这个slices数字很大(例如500),建议选择一个较低的数字,因为过大的slices 会影响性能。

    4.3 ES副本数设置为0
    如果要进行大量批量导入,请考虑通过设置index.number_of_replicas来禁用副本:0。
    主要原因在于:复制文档时,将整个文档发送到副本节点,并逐字重复索引过程。 这意味着每个副本都将执行分析,索引和潜在合并过程。
    相反,如果您使用零副本进行索引,然后在提取完成时启用副本,则恢复过程本质上是逐字节的网络传输。 这比复制索引过程更有效。

    PUT /my_logs/_settings
    {
    "number_of_replicas": 1
    }

    4.4 增加refresh间隔
    如果你的搜索结果不需要接近实时的准确性,考虑先不要急于索引刷新refresh。可以将每个索引的refresh_interval到30s。
    如果正在进行大量数据导入,可以通过在导入期间将此值设置为-1来禁用刷新。完成后不要忘记重新启用它!
    设置方法:

    PUT /my_logs/_settings
    { "refresh_interval": -1 }

    5、小结
    实践证明,比默认设置reindex速度能提升10倍+。
    遇到类似问题,多从官网、原理甚至源码的角度思考,逐步拆解分析。
    只要思维不滑坡,办法总比问题多!

    参考:
    [1] Jest Reindex参考:http://t.cn/RDOyIc8
    [2] 官网性能优化:http://t.cn/RDOyJqr
    [3] 论坛讨论:http://t.cn/RDOya3a

    [4] 官网reindex介绍: https://www.elastic.co/guide/en/elasticsearch/reference/5.6/docs-reindex.html
    ---------------------
    作者:铭毅天下(公众号同名)
    来源:CSDN
    原文:https://blog.csdn.net/laoyang360/article/details/81589459
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    Python基础之 一 字典(dict)
    python基础之-字符串
    Python基础之 一列表
    Python基础之 一 补充
    python基础之-数据类型
    python之模块随笔记-sys
    python之练习-三层菜单
    Python基础之 二
    SQL Server 数据类型
    SQLServer视图
  • 原文地址:https://www.cnblogs.com/libin2015/p/10411546.html
Copyright © 2020-2023  润新知