• 关于数组乱序的深挖——“感觉一直在写毒代码”


    最近看了一篇非常有趣的文章:关于JavaScript的数组随机排序,其作者为oldj前辈。文中指出我们用来“将一个数组随机排序”的经典写法所存在的问题,获益匪浅。

    本文将以更加详尽的材料和更多样的code demo进行阐述。并尝试用“Fisher–Yates shuffle”洗牌算法进行终极解答。

    多个熟悉的场景

    将一个数组进行乱序处理,是一个非常简单但是非常常用的需求。
    比如,“猜你喜欢”、“点击换一批”、“中奖方案”等等,都可能应用到这样的处理。包括我自己在写代码的时候,也确实遇到过。
    一般比较经典且流行的方案为:对对象数组采用array.sort()方法,并传入一个比较函数(comparison function),这个比较函数随机返回一个介于[-0.5, 0.5]之间的数值:

    var numbers = [12,4,16,3];
    numbers.sort(function() {
        return .5 - Math.random();
    });

    关于这么做的理论基础这里不再进行阐释。如果您不明白,可以了解一下JS中sort函数的使用方法。

    有毒的array.sort方法

    正像oldj前辈文章指出的那样,其实使用这个方法乱序一个数组是有问题的。

    为此,我写了一个脚本进行验证。并进行了可视化处理。强烈建议读者去Github围观一下,clone下来自己试验。

    脚本中,我对

    var letters = ['A','B','C','D','E','F','G','H','I','J'];

    letters这样一个数组使用array.sort方法进行了10000次乱序处理,并把乱序的每一次结果存储在countings当中。
    结果在页面上进行输出:

    var countings = [
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0},
        {A:0,B:0,C:0,D:0,E:0,F:0,G:0,H:0,I:0,J:0}
    ];
    var letters=['A','B','C','D','E','F','G','H','I','J'];
    for (var i = 0; i < 10000; i++) {
        var r = ['A','B','C','D','E','F','G','H','I','J'].sort(function() {
            return .5 - Math.random();
        });
        for(var j = 0; j <= 9; j++) {
            countings[j][r[j]]++;
        }
    }
    for(var i = 0; i <= 9;i++) {
        for(var j = 0;j <= 9;j++) {
            document.getElementById('results').rows[i + 1].cells[j + 1].firstChild.data = countings[i][letters[j]];
        }
    }

    得到结果如图:

    最终结果

    这个结果对数组中的每一项元素在乱序后的结果进行了统计。
    如果点击“recalculate”按钮,可以进行多次10000次取样试验。

    不管点击按钮几次,你都会发现整体乱序之后的结果绝对不是“完全随机”。
    比如A元素大概率出现在数组的头部,J元素大概率出现在数组的尾部,所有元素大概率停留在自己初始位置。

    由此可以先粗暴地得出结论:
    使用array.sort方法进行乱序处理,绝对是有问题的。

    array.sort方法底层究竟如何实现?

    但是为什么会有问题呢?这需要从array.sort方法排序底层说起。
    Chrome v8引擎源码中,可以清晰看到,

    v8在处理sort方法时,使用了插入排序和快排两种方案。当目标数组长度小于10时,使用插入排序;反之,使用快排。
    Chrome’s v8 uses a combination of InsertionSort and QuickSort. That is, if the array is less than 10 elements in length, it uses an InsertionSort.

    其实不管用什么排序方法,大多数排序算法的时间复杂度介于O(n)到O(n2)之间,元素之间的比较次数通常情况下要远小于n(n-1)/2,也就意味着有一些元素之间根本就没机会相比较(也就没有了随机交换的可能),这些 sort 随机排序的算法自然也不能真正随机。

    怎么理解上边这句话呢?其实我们想使用array.sort进行乱序,理想的方案或者说纯乱序的方案是数组中每两个元素都要进行比较,这个比较有50%的交换位置概率。这样一来,总共比较次数一定为n(n-1)。
    而在sort排序算法中,大多数情况都不会满足这样的条件。因而当然不是完全随机的结果了。

    顺便说一下,关于v8引擎的排序方案,源码使用JS实现的,非常利于前端程序员阅读。其中,对应不同的数组长度,使用了快排和插入排序不同方法。同时使用了大量的性能优化技巧,尤其是关于快排的pivot选择上十分有意思。感兴趣的读者不妨研究一下。

    真正意义上的乱序

    要想实现真正意义上的乱序,其实不难。我们首先要规避不稳定的array.sort方法。
    在计算机科学中,有一个专门的:洗牌算法Fisher–Yates shuffle。如果你对算法天生迟钝,也不要慌张。这里我一步一步来实现,相信您一定要得懂。

    先来整体看一下所有代码实现,一共也就10行:

    Array.prototype.shuffle = function() {
        var input = this;
        for (var i = input.length-1; i >=0; i--) {
            var randomIndex = Math.floor(Math.random()*(i+1)); 
            var itemAtIndex = input[randomIndex]; 
            input[randomIndex] = input[i]; 
            input[i] = itemAtIndex;
        }
        return input;
    }
    var tempArray = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
    tempArray.shuffle();
    console.log(tempArray);  

    解析:
    首先我们有一个已经排好序的数组:

    a1.png

    Step1:
    第一步需要做的就是,从数组末尾开始,选取最后一个元素。

    a2.png

    在数组一共9个位置中,随机产生一个位置,该位置元素与最后一个元素进行交换。

    a3.png

    a4.png

    a5.png

    Step2:
    上一步中,我们已经把数组末尾元素进行随机置换。
    接下来,对数组倒数第二个元素动手。在除去已经排好的最后一个元素位置以外的8个位置中,随机产生一个位置,该位置元素与倒数第二个元素进行交换。

    a6.png

    a7.png

    a8.png

    Step3:
    理解了前两部,接下来就是依次进行,如此简单。

    a9.png

    自己实现乱序

    以上方法,是基于Fisher–Yates shuffle洗牌算法。下面,我们就需要自己开动脑筋,完成一个乱序方案。
    其实这并不难,关键在于如何生产真正的乱序。因为往往生成的并不是完全意义上的乱序,关于这一点,读者可以参考The Danger of Naïveté一文。

    我们来看一下社区上刘哇勇的一系列进阶方案:

    function shuffle (array) {
        var copy = [],
            n = array.length,
            i;
        while (n) {
            i = Math.floor(Math.random() * array.length);
            if (i in array) {
                copy.push(array[i]);
                delete array[i];
                n--;
            }
        }
        return copy;
    }

    关于这种方案,也给出了分析:

    我们创建了一个copy数组,然后遍历目标数组,将其元素复制到copy数组里,同时将该元素从目标数组中删除,这样下次遍历的时候就可以跳过这个序号。而这一实现的问题正在于此,即使一个序号上的元素已经被处理过了,由于随机函数产生的数是随机的,所有这个被处理过的元素序号可能在之后的循环中不断出现,一是效率问题,另一个就是逻辑问题了,存在一种可能是永远运行不完。

    改进的方案为:

    function shuffle(array) {
        var copy = [],
            n = array.length,
            i;
        while (n) {
            i = Math.floor(Math.random() * n--);
            copy.push(array.splice(i, 1)[0]);
        }
        return copy;
    }

    改进的做法就是处理完一个元素后,用Array的splice()方法将其从目标数组中移除,同时也更新了目标数组的长度。如此一来下次遍历的时候是从新的长度开始,不会重复处理的情况了。

    当然这样的方案也有不足之处:比如,我们创建了一个copy数组进行返回,在内存上开辟了新的空间。
    不过,这可以完全避免:

    function shuffle(array) {
        var m = array.length,
            t, i;
        while (m) {
            i = Math.floor(Math.random() * m--);
            t = array[m];
            array[m] = array[i];
            array[i] = t;
        }
        return array;
    }

    有趣的是,这样的实现已经完全等同于上文洗牌算法Fisher–Yates shuffle的方案了。

    总结

    本文剖析了“数组乱序”这么一个简单,但是有趣的需求场景。
    对这个场景的深入分析,让我们认识到JS和计算机算法中的一些玄妙。
    文章简要提到了V8引擎对array.sort的处理、洗牌算法Fisher–Yates等内容。希望对读者有所启发。

    Happy Coding!

    PS:
    作者Github仓库,欢迎通过代码各种形式交流。
    百度知识搜索部大前端继续招兵买马,高级工程师、实习生职位均有,有意向者火速联系。

  • 相关阅读:
    设计模式 — 责任链模式
    BlockingQueue 阻塞队列(生产/消费者队列)
    DDD工作流持久化(十六)
    js中匿名函数和回调函数
    DDD模型领域WF到领域层(十五)
    DDD领域模型系统的工作流(十四)
    DDD领域模型数据访问权限之权限(十二)
    DDD领域模型数据访问之对象(十一)
    DDD领域模型数据访问权限之用户权限(十)
    DDD领域模型数据访问权限(九)
  • 原文地址:https://www.cnblogs.com/libin-1/p/6706480.html
Copyright © 2020-2023  润新知