• Uva 350 PseudoRandom Numbers


    Pseudo-Random Numbers 

    Computers normally cannot generate really random numbers, but frequently are used to generate sequences of pseudo-random numbers. These are generated by some algorithm, but appear for all practical purposes to be really random. Random numbers are used in many applications, including simulation.

    A common pseudo-random number generation technique is called the linear congruential method. If the last pseudo-random number generated was L, then the next number is generated by evaluating ( tex2html_wrap_inline32 , where Z is a constant multiplier, I is a constant increment, and M is a constant modulus. For example, suppose Z is 7, I is 5, and M is 12. If the first random number (usually called the seed) is 4, then we can determine the next few pseudo-random numbers are follows:

    tabular21

    As you can see, the sequence of pseudo-random numbers generated by this technique repeats after six numbers. It should be clear that the longest sequence that can be generated using this technique is limited by the modulus, M.

    In this problem you will be given sets of values for ZIM, and the seed, L. Each of these will have no more than four digits. For each such set of values you are to determine the length of the cycle of pseudo-random numbers that will be generated. But be careful: the cycle might not begin with the seed!

    Input

    Each input line will contain four integer values, in order, for ZIM, and L. The last line will contain four zeroes, and marks the end of the input data. L will be less than M.

    Output

    For each input line, display the case number (they are sequentially numbered, starting with 1) and the length of the sequence of pseudo-random numbers before the sequence is repeated.

    Sample Input

    7 5 12 4
    5173 3849 3279 1511
    9111 5309 6000 1234
    1079 2136 9999 1237
    0 0 0 0

    Sample Output

    Case 1: 6
    Case 2: 546
    Case 3: 500
    Case 4: 220

    #include<stdio.h>
    #include<string.h>
    #define MAXN 10000
    int cycle[MAXN];
    int judge[MAXN];
    int main()
    {
    
        int i, temp, base, n, step, mod, cnt, k, T = 0;
        while(scanf("%d%d%d%d", &base, &step, &mod, &n) != EOF)
        {
            if(base+n+step+mod == 0) break;  // sign for end of input
            
            memset(cycle, 0, sizeof(cycle)); //initialization
            memset(judge, 0, sizeof(judge));
            
            for(cnt=0,temp=n; cnt < MAXN && judge[temp] == 0; ++cnt)
            {// find the same digit and record the forehead number
                judge[temp] = 1, cycle[cnt] = temp;
                temp = (base*temp + step) % mod;
            }
            printf("Case %d: ", ++T);
            if(temp != n) 
            {// if the aim number is not the first one
                k = 0;
                while(temp != cycle[++k]);
                printf("%d\n", cnt-k);
            }
            else printf("%d\n", cnt);
        }
        
        return 0;
    }

    解题思路:

    跟上面一题差不多,有上一题的经验,就不用怕开的数组会超内存或者超时了,所以还是一样的遍历,终止的信号是之前出现同样的数字,后面也要注意开始的那一个数不一定就是后面相等的数

    PS:完全不在状态啊,没有把重定向删掉导致了一次不必要的WA

  • 相关阅读:
    SPOJ 8222 NSUBSTR
    bzoj千题计划284:bzoj2882: 工艺
    bzoj千题计划283:bzoj4516: [Sdoi2016]生成魔咒(后缀数组)
    bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数
    bzoj千题计划281:bzoj4558: [JLoi2016]方
    bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
    bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改
    bzoj千题计划278:bzoj4590: [Shoi2015]自动刷题机
    bzoj千题计划277:bzoj4513: [Sdoi2016]储能表
    bzoj千题计划276:bzoj4515: [Sdoi2016]游戏
  • 原文地址:https://www.cnblogs.com/liaoguifa/p/2952225.html
Copyright © 2020-2023  润新知