A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 4 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
Note:
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
解题思路:
有点类似并查集,对于一个长度实际上肯定是形成一个封闭的环的,这里用递归统计了长度。速度有点慢。
- class Solution {
- private:
- vector<int> know;
- int count=0;
- unordered_map<int,int> exist;
- int deep(vector<int>& nums,int i){
- if(exist.count(i) > 0) {return count;}
- exist[i]++;
- count++;
- know[i] = deep(nums,nums[i]);
- return know[i];
- }
- public:
- int arrayNesting(vector<int>& nums) {
- int max_digit=0;
- for(int i=0;i<nums.size();i++){
- know.push_back(-1);
- }
- vector<int> store;
- for(int i=0;i<nums.size();i++){
- exist.clear();
- count=0;
- if(know[i] == -1)
- know[i] = deep(nums,i);
- if(know[i]>max_digit) max_digit = know[i];
- }
- return max_digit;
- }
- };