SPI(serial peripheral interface)串行外围接口,是主控制器与外设进行串口通信的接口。主要包括四条控制线,分别是SCLK(串行时钟)、MOSI(主出从入)、MISO(主入从出)、SS(芯片选择使能信号、低电平有效)。
先说说S5PV210的SPI的特点
1.全双工工作
2.发送/接收的移位寄存器可以是8位/16位/32位
3.主从模式
4.发送和接收的最大频率可达50MHz
5.支持摩托罗拉SPI协议和美国半导体总线协议
6.两路SPI信号
支持四种工作模式:
当CPHA(同步时钟相位)为0时,为格式A,当CPHA为1时,为格式B
当CPHA为0时,即格式A,串行同步时钟在第一个跳变(上升沿或下降沿)/(前沿)读取数据
当CPHA为1时,即格式B时,串行同步时钟在第二个跳变沿(上升沿或下降沿)/(后沿)读取数据
当CPOL(同步时钟极性)为1时,SPICLK空闲时处于高电平,CPOL为0时,SPICLK空闲时处于低电平
至于两路SPI的控制寄存器,接收数据寄存器、发送数据寄存器之类的,就不做多介绍了,因为要根据具体情况而进行设定。详情参看S5PV20_UM手册。
接下来使用source insight 查看SPI的原理
因为linux设备驱动框架采用分层和分离的思想,像linux中SPI、IIC、USB之类的子系统都采用了分离的设计思想,即主机驱动与外设驱动分离。
以下这张图是宋宝华老师写的设备驱动开发详解里面的:描述了主机驱动和外设驱动的关系,主机控制器驱动不用关心外设,同样的外设驱动也不用关心主机,两者都是通过核心层进行信息的交互。
对于LINUX 3.0.8中,
SPI总线的层次关系,这张图是嵌入式学院的刘洪涛老师讲的,我觉得讲的挺好的,就贴到着了
对于上面SPI的层次图,解释一下,我们知道SPI总线分为主从设备,而在linux中SPI的主设备(主机控制驱动)采用platform_device在BSP(板级支持包)中存储于主机硬件相关的信息,在platform_driver中存储操作,用platform_bus_type进行连接platform_device和platform_driver;而从设备(外设驱动)采用spi_device(准确的说是spi_board_info结构体)存储外设硬件相关信息,用spi_driver存储操作,用spi_bus_type进行连接spi_device与spi_driver。
先说主机控制器这部分
在内核的 include/linux/spi/spi.h 中,定义了主机控制器比较重要的几个机构体:分别是spi_master、spi_message、spi_transfer
spi_master结构体
struct spi_master { struct device dev; struct list_head list; /* other than negative (== assign one dynamically), bus_num is fully * board-specific. usually that simplifies to being SOC-specific. * example: one SOC has three SPI controllers, numbered 0..2, * and one board's schematics might show it using SPI-2. software * would normally use bus_num=2 for that controller. */ s16 bus_num; /* chipselects will be integral to many controllers; some others * might use board-specific GPIOs. */ u16 num_chipselect; /* some SPI controllers pose alignment requirements on DMAable * buffers; let protocol drivers know about these requirements. */ u16 dma_alignment; /* spi_device.mode flags understood by this controller driver */ u16 mode_bits; /* other constraints relevant to this driver */ u16 flags; #define SPI_MASTER_HALF_DUPLEX BIT(0) /* can't do full duplex */ #define SPI_MASTER_NO_RX BIT(1) /* can't do buffer read */ #define SPI_MASTER_NO_TX BIT(2) /* can't do buffer write */ /* lock and mutex for SPI bus locking */ spinlock_t bus_lock_spinlock; struct mutex bus_lock_mutex; /* flag indicating that the SPI bus is locked for exclusive use */ bool bus_lock_flag; /* Setup mode and clock, etc (spi driver may call many times). * * IMPORTANT: this may be called when transfers to another * device are active. DO NOT UPDATE SHARED REGISTERS in ways * which could break those transfers. */ int (*setup)(struct spi_device *spi); /* bidirectional bulk transfers * * + The transfer() method may not sleep; its main role is * just to add the message to the queue. * + For now there's no remove-from-queue operation, or * any other request management * + To a given spi_device, message queueing is pure fifo * * + The master's main job is to process its message queue, * selecting a chip then transferring data * + If there are multiple spi_device children, the i/o queue * arbitration algorithm is unspecified (round robin, fifo, * priority, reservations, preemption, etc) * * + Chipselect stays active during the entire message * (unless modified by spi_transfer.cs_change != 0). * + The message transfers use clock and SPI mode parameters * previously established by setup() for this device */ int (*transfer)(struct spi_device *spi, struct spi_message *mesg); /* called on release() to free memory provided by spi_master */ void (*cleanup)(struct spi_device *spi); };
对于spi_master结构体,个人觉得比较重要的就是
1.dev成员变量,代表一个主机控制器设备
2.bus_num成员变量,应该说是总线编号,用于连接与此主控制相关的从设备 在drivers/spi/Spi_s3c64xx.c(这个文件就是一个spi主控制器的实现)中的s3c64xx_spi_probe函数 中,追踪源码(s3c64xx_spi_probe-->spi_register_master-->spi_match_master_to_boardinfo)会发现这么一句话
if (master->bus_num != bi->bus_num)
return;
即将主控制器的bus_num与从设备的bus_num进行匹配,不匹配则返回,如果匹配则调用spi_new_device函数,创建于此主控制器相关的从设备
3.(*transfer)(struct spi_device *spi,struct spi_message *mesg); ,transfer函数指针,这个transfer函数指针就是用来最终进行主从设备进行信息交换的函数。
spi_transfer结构体
struct spi_transfer { /* it's ok if tx_buf == rx_buf (right?) * for MicroWire, one buffer must be null * buffers must work with dma_*map_single() calls, unless * spi_message.is_dma_mapped reports a pre-existing mapping */ const void *tx_buf; void *rx_buf; unsigned len; dma_addr_t tx_dma; dma_addr_t rx_dma; unsigned cs_change:1; u8 bits_per_word; u16 delay_usecs; u32 speed_hz; struct list_head transfer_list; };
spi_transfer相当于主从设备发送消息时的一个数据包,
重要的字段分别是tx_buf(发送缓存)、rx_buf(接受缓存)、len(长度)
spi_message结构体
struct spi_message { struct list_head transfers; struct spi_device *spi; unsigned is_dma_mapped:1; /* REVISIT: we might want a flag affecting the behavior of the * last transfer ... allowing things like "read 16 bit length L" * immediately followed by "read L bytes". Basically imposing * a specific message scheduling algorithm. * * Some controller drivers (message-at-a-time queue processing) * could provide that as their default scheduling algorithm. But * others (with multi-message pipelines) could need a flag to * tell them about such special cases. */ /* completion is reported through a callback */ void (*complete)(void *context); void *context; unsigned actual_length; int status; /* for optional use by whatever driver currently owns the * spi_message ... between calls to spi_async and then later * complete(), that's the spi_master controller driver. */ struct list_head queue; void *state; };
spi_message相当于主从设备信息发送时的一帧数据,包含多个数据包,使用transfers字段将多个spi_transfer进行连接
同样是在include/linux/spi/spi.h中,再来看看外设驱动这边,SPI的外设设备驱动的实现和platform设备驱动的实现很像,采用的是通过总线连接外设与驱动,所以比较重要的结构体有:
spi_device、spi_board_info、spi_bus_type、spi_driver
spi_device结构体
struct spi_device { struct device dev; struct spi_master *master; u32 max_speed_hz; u8 chip_select; u8 mode; #define SPI_CPHA 0x01 /* clock phase */ #define SPI_CPOL 0x02 /* clock polarity */ #define SPI_MODE_0 (0|0) /* (original MicroWire) */ #define SPI_MODE_1 (0|SPI_CPHA) #define SPI_MODE_2 (SPI_CPOL|0) #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA) #define SPI_CS_HIGH 0x04 /* chipselect active high? */ #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */ #define SPI_3WIRE 0x10 /* SI/SO signals shared */ #define SPI_LOOP 0x20 /* loopback mode */ #define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */ #define SPI_READY 0x80 /* slave pulls low to pause */ u8 bits_per_word; int irq; void *controller_state; void *controller_data; char modalias[SPI_NAME_SIZE]; /* * likely need more hooks for more protocol options affecting how * the controller talks to each chip, like: * - memory packing (12 bit samples into low bits, others zeroed) * - priority * - drop chipselect after each word * - chipselect delays * - ... */ };
spi_device用来描述一个从设备,比较重要的字段有dev,
master(从设备隶属于哪一个主设备)、
modalias(设备的名称,在spi_bus_type的spi_match_device函数中用于和spi_driver的name字段进行匹配的,
在drivers/spi/Spi.c 中的 spi_match_device函数中源码
return strcmp(spi->modalias, drv->name) == 0; )
spi_board_info结构体
struct spi_board_info { /* the device name and module name are coupled, like platform_bus; * "modalias" is normally the driver name. * * platform_data goes to spi_device.dev.platform_data, * controller_data goes to spi_device.controller_data, * irq is copied too */ char modalias[SPI_NAME_SIZE]; const void *platform_data; void *controller_data; int irq; /* slower signaling on noisy or low voltage boards */ u32 max_speed_hz; /* bus_num is board specific and matches the bus_num of some * spi_master that will probably be registered later. * * chip_select reflects how this chip is wired to that master; * it's less than num_chipselect. */ u16 bus_num; u16 chip_select; /* mode becomes spi_device.mode, and is essential for chips * where the default of SPI_CS_HIGH = 0 is wrong. */ u8 mode; /* ... may need additional spi_device chip config data here. * avoid stuff protocol drivers can set; but include stuff * needed to behave without being bound to a driver: * - quirks like clock rate mattering when not selected */ };
实际上spi_device的很多板信息都存储在spi_board_info结构体中,spi_board_info结构体存储了片选信号(chip_select),主机总线编号(即bus_num)、spi传输的模式(mode)
等等
在linux启动过程中,在init_machine函数中,通过spi_register_board_info函数进行BSP信息的注册,当注册从设备的板信息时,会调用spi_match_master_to_boardinfo(master, &bi->board_info);函数进行主控制器与从设备的匹配
spi_bus_type结构体
struct bus_type spi_bus_type = { .name = "spi", .dev_attrs = spi_dev_attrs, .match = spi_match_device, .uevent = spi_uevent, .pm = &spi_pm, };
spi_bus_type用于连接spi_device和spi_driver,在spi_match_device函数中,
static int spi_match_device(struct device *dev, struct device_driver *drv) { const struct spi_device *spi = to_spi_device(dev); const struct spi_driver *sdrv = to_spi_driver(drv); /* Attempt an OF style match */ if (of_driver_match_device(dev, drv)) return 1; if (sdrv->id_table) return !!spi_match_id(sdrv->id_table, spi); return strcmp(spi->modalias, drv->name) == 0; }
先看of_driver_match_device函数,追踪源码会发现,它会先比较drv的of_match_table字段和dev的of_node字段,匹配两个字段的name,type,compatible三个字段是否相同,
接着是spi_match_id函数,它会遍历sdrv的id_table(即spi_driver支持的设备列表)结构体中的name与spi->modalias,比较是否匹配,匹配则返回id结构体
while (id->name[0]) { if (!strcmp(sdev->modalias, id->name)) return id; id++; }
最后才是strcmp(spi->modalias, drv->name) == 0,比较设备名称spi->modalias与驱动名称drv->name字段匹配
spi_driver结构体
struct spi_driver { const struct spi_device_id *id_table; int (*probe)(struct spi_device *spi); int (*remove)(struct spi_device *spi); void (*shutdown)(struct spi_device *spi); int (*suspend)(struct spi_device *spi, pm_message_t mesg); int (*resume)(struct spi_device *spi); struct device_driver driver; };
spi_driver存储于外设驱动相关的操作
接下来以内核中一个SPI实例,进一步解析SPI原理,实现过程
需要用到以下文件
drivers/spi/spi_s3c64xx.c 主机控制器platform_driver
arch/arm/mach-s5pv210/dev-spi.c 主机控制器platform_device
drivers/spi/spi.c 核心层API
arch/sh/boards/board-sh7757lcr.c 外设spi_device(即spi_board_info)
先从drivers/spi/spi_s3c64xx.c中的
1.模块初始化函数看起
static int __init s3c64xx_spi_init(void) { return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe); }
查看platform_driver_probe,有两行代码需要注意
drv->probe = probe;
retval = code = platform_driver_register(drv);
其实上面两行代码是将probe函数赋值给驱动,并且注册驱动。如果熟悉platform机制的朋友,就会很了解。其实platform_driver_probe只是对platform_driver_register的一个封装而已。
查看platform_driver_register,
int platform_driver_register(struct platform_driver *drv) { drv->driver.bus = &platform_bus_type; if (drv->probe) drv->driver.probe = platform_drv_probe; if (drv->remove) drv->driver.remove = platform_drv_remove; if (drv->shutdown) drv->driver.shutdown = platform_drv_shutdown; return driver_register(&drv->driver); }
上面的代码
drv->driver.bus = &platform_bus_type; 给platform_driver里面的driver字段的bus字段赋初值,将之设为platform_bus_type
三个if语句,用于将platform_driver的操作赋值给driver
查看driver_register,有一句话,将驱动添加到总线上,,即将驱动挂载为platform_bus_type
ret = bus_add_driver(drv);
查看bus_add_driver,驱动捆绑函数
error = driver_attach(drv);
查看driver_attach,此时遍历设备链表,查找与驱动匹配的设备
return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
查看bus_for_each_dev,下面的while循环,即调用__driver_attach
while ((dev = next_device(&i)) && !error)
error = fn(dev, data);
查看__driver_attach,判断,如果设备的驱动为NULL的话,即调用driver_probe_device
if (!dev->driver)
driver_probe_device(drv, dev);
查看driver_probe_device,在relly_probe里面即是最终的匹配的驱动和设备的连接
ret = really_probe(dev, drv);
查看really_probe,下面有三段,分别是将驱动绑定在设备上、调用驱动的probe函数、将设备绑定在驱动上
dev->driver = drv; if (dev->bus->probe) { ret = dev->bus->probe(dev); if (ret) goto probe_failed; } else if (drv->probe) { ret = drv->probe(dev); if (ret) goto probe_failed; } driver_bound(dev);
到此为止,即完成了驱动与设备的查找与绑定。
在上面really_probe函数里面的第二段 ret = drv->probe(dev); 调用驱动的probe函数,回想一下,即在platform_driver_register函数里面的
if (drv->probe) drv->driver.probe = platform_drv_probe; //查看platform_drv_probe源码会发现,是将platform_driver的probe函数赋值给driver的probe函数
所以调用驱动的probe函数即是调用模块初始化的s3c64xx_spi_probe函数
2.查看s3c64xx_spi_probe函数
先是
dmatx_res = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (dmatx_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI-Tx dma resource "); return -ENXIO; } dmarx_res = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (dmarx_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI-Rx dma resource "); return -ENXIO; } mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (mem_res == NULL) { dev_err(&pdev->dev, "Unable to get SPI MEM resource "); return -ENXIO; }
获取到在arch/arm/mach-s3c64xx/dev-spi.c定义的资源文件
接着是
master = spi_alloc_master(&pdev->dev,sizeof(struct s3c64xx_spi_driver_data));
创建一个spi_master返回给master指针
接着是
spi_register_master(master);
注册一个master ,
查看spi_register_master源码中有一行:
list_for_each_entry(bi, &board_list, list) spi_match_master_to_boardinfo(master, &bi->board_info); //遍历spi_board_info链表,查找与master匹配的spi_board_spi
查看spi_match_master_to_boardinfo函数
if (master->bus_num != bi->bus_num) return; dev = spi_new_device(master, bi);
判断主从设备的总线编号是否匹配,匹配的话,则调用spi_new_device函数
查看spi_new_device函数,创建spi_device
proxy = spi_alloc_device(master);
查看spi_alloc_device
struct spi_device *spi_alloc_device(struct spi_master *master) { struct spi_device *spi; struct device *dev = master->dev.parent; if (!spi_master_get(master)) return NULL; spi = kzalloc(sizeof *spi, GFP_KERNEL); if (!spi) { dev_err(dev, "cannot alloc spi_device "); spi_master_put(master); return NULL; } spi->master = master; spi->dev.parent = dev; spi->dev.bus = &spi_bus_type; spi->dev.release = spidev_release; device_initialize(&spi->dev); return spi;
} 创建一个spi_device,并返回, spi->master = master; 即将spi_device与之主master连接在一起
上面第一步,第二步分别完成了主机设备与驱动的绑定、创建spi_master、若有匹配的spi_board_info,则创建与之master匹配的spi_device
3.spi_device与spi_driver通过spi_bus_type进行绑定的过程,与第一步的很类似,就不叙述了,详情参看源码driversspiSpi.c文件
4.注册spi_board_info信息时,与spi_master进行匹配
先看driversspiSpi.c文件中的spi_register_board_info函数
list_for_each_entry(master, &spi_master_list, list) spi_match_master_to_boardinfo(master, &bi->board_info);
遍历master列表,查找与之匹配的spi_board_info
查看spi_match_master_to_boardinfo
static void spi_match_master_to_boardinfo(struct spi_master *master, struct spi_board_info *bi) { struct spi_device *dev; if (master->bus_num != bi->bus_num) return; dev = spi_new_device(master, bi); if (!dev) dev_err(master->dev.parent, "can't create new device for %s ", bi->modalias); }
接下来的过程与第二步又很像了,也不叙述了。
至此,已对SPI主机控制器的驱动与设备如何连接,SPI从设备的驱动和设备如何连接,SPI主控制器设备如何与从设备进行连接,进行了分析,下一步应该是SPI的主从设备间相互通信了,以及实例的介绍了。