• 共享内存实现大规模点积


    项目打包下载
      1 /*
      2 * Copyright 1993-2010 NVIDIA Corporation.  All rights reserved.
      3 *
      4 * NVIDIA Corporation and its licensors retain all intellectual property and
      5 * proprietary rights in and to this software and related documentation.
      6 * Any use, reproduction, disclosure, or distribution of this software
      7 * and related documentation without an express license agreement from
      8 * NVIDIA Corporation is strictly prohibited.
      9 *
     10 * Please refer to the applicable NVIDIA end user license agreement (EULA)
     11 * associated with this source code for terms and conditions that govern
     12 * your use of this NVIDIA software.
     13 *
     14 */
     15 
     16 
     17 #include "../common/book.h"
     18 #include "cuda.h"
     19 #include "cuda_runtime.h"
     20 #include "device_launch_parameters.h"
     21 #include "device_functions.h"
     22 #define imin(a,b) (a<b?a:b)
     23 
     24 const int N = 33 * 1024;
     25 const int threadsPerBlock = 256;//每个线程块启动256个线程
     26 const int blocksPerGrid = imin(32, (N + threadsPerBlock - 1) / threadsPerBlock);
     27 
     28 /*
     29 内核函数
     30 */
     31 __global__ void dot(float *a, float *b, float *c) {
     32     //设备上的共享内存,在每个线程块中都有
     33     __shared__ float cache[threadsPerBlock];
     34     int tid = threadIdx.x + blockIdx.x * blockDim.x;
     35     //线程块中的线程索引赋值给缓冲索引
     36     int cacheIndex = threadIdx.x;
     37 
     38     float   temp = 0;
     39     //当前索引小于总共的数据量时
     40     while (tid < N) {
     41         temp += a[tid] * b[tid];
     42         //步长为活动的线程数
     43         tid += blockDim.x * gridDim.x;
     44     }//如果再次在这个线程上执行时,temp中存放的是上次计算的值,也就是再次计算的结果是加上上次计算的值
     45 
     46     // set the cache values
     47     //将结果存放在共享存储中,每个线程对应一个共享存储
     48     cache[cacheIndex] = temp;
     49 
     50     /*
     51     synchronize threads in this block
     52     同步操作,使得每个线程都计算完毕,再继续后面的操作
     53     */
     54     __syncthreads();
     55  
     56 
     57     // for reductions, threadsPerBlock must be a power of 2
     58     // because of the following code
     59     /*
     60     归约操作
     61     blockDim.x / 2块中的线程个数除以2,相当于取中间值
     62     因为这个blockDim是2的倍数,所以不会有除不尽的情况
     63     */
     64     int i = blockDim.x / 2;
     65     while (i != 0) {
     66         if (cacheIndex < i)
     67             /*
     68             前半部分和后半部分对应的第一个相加,以此类推
     69             */
     70             cache[cacheIndex] += cache[cacheIndex + i];
     71         /*
     72         同步使得所有线程完成了第一次归约在进行下一次归约
     73         */
     74         __syncthreads();
     75         //下次归约的中间值
     76         i /= 2;
     77     }
     78     //最终结果存放在cache[0]中,所以将cache[0]赋给以块索引为下标的数组中
     79     if (cacheIndex == 0)
     80         c[blockIdx.x] = cache[0];
     81 }
     82 
     83 
     84 int main(void) {
     85     float   *a, *b, c, *partial_c;
     86     float   *dev_a, *dev_b, *dev_partial_c;
     87 
     88     // allocate memory on the cpu side
     89     a = (float*)malloc(N*sizeof(float));
     90     b = (float*)malloc(N*sizeof(float));
     91     partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
     92 
     93     // allocate the memory on the GPU
     94     HANDLE_ERROR(cudaMalloc((void**)&dev_a,
     95         N*sizeof(float)));
     96     HANDLE_ERROR(cudaMalloc((void**)&dev_b,
     97         N*sizeof(float)));
     98     HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,
     99         blocksPerGrid*sizeof(float)));
    100 
    101     // fill in the host memory with data
    102     for (int i = 0; i<N; i++) {
    103         a[i] = i;
    104         b[i] = i * 2;
    105     }
    106 
    107     // copy the arrays 'a' and 'b' to the GPU
    108     HANDLE_ERROR(cudaMemcpy(dev_a, a, N*sizeof(float),
    109         cudaMemcpyHostToDevice));
    110     HANDLE_ERROR(cudaMemcpy(dev_b, b, N*sizeof(float),
    111         cudaMemcpyHostToDevice));
    112 
    113     dot << <blocksPerGrid, threadsPerBlock > >>(dev_a, dev_b, dev_partial_c);
    114 
    115     // copy the array 'c' back from the GPU to the CPU
    116     HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,
    117         blocksPerGrid*sizeof(float),
    118         cudaMemcpyDeviceToHost));
    119 
    120     /* 在主机上完成最后的相加工作
    121     这样是为了避免简单的工作在GPU上造成的资源浪费
    122     因为好多资源处于空闲状态
    123     */
    124     c = 0;
    125     for (int i = 0; i<blocksPerGrid; i++) {
    126         c += partial_c[i];
    127     }
    128 
    129 #define sum_squares(x)  (x*(x+1)*(2*x+1)/6)
    130     printf("Does GPU value %.6g = %.6g?
    ", c, 2 * sum_squares((float)(N - 1)));
    131 
    132     // free memory on the gpu side
    133     HANDLE_ERROR(cudaFree(dev_a));
    134     HANDLE_ERROR(cudaFree(dev_b));
    135     HANDLE_ERROR(cudaFree(dev_partial_c));
    136 
    137     // free memory on the cpu side
    138     free(a);
    139     free(b);
    140     free(partial_c);
    141 }
    
    
  • 相关阅读:
    OS X进程管理之launchctl
    varnish-4.x 之varnishlog,varnishstat,varnishtop,varnishhist
    Java ClassLoader详解(转载)
    java线程中断[interrupt()函数] (转载)
    Struts2实例详解(转载)
    java 重定向和转发(转载)
    Java中Class.forName()的作用(转载)
    JSP页面的编码设置(转载)
    Struts2 实例(转载)
    Spring AOP(转载)
  • 原文地址:https://www.cnblogs.com/liangliangdetianxia/p/3986133.html
Copyright © 2020-2023  润新知