• 05-3. 六度空间 (PAT)


     

    “六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图6.4所示。


    图6.4 六度空间示意图

    “六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。

    假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。

    输入格式说明:

    输入第1行给出两个正整数,分别表示社交网络图的结点数N (1<N<=104,表示人数)、边数M(<=33*N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。

    输出格式说明:

    对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。

    样例输入与输出:

    序号 输入 输出
    1
    10 9
    1 2
    2 3
    3 4
    4 5
    5 6
    6 7
    7 8
    8 9
    9 10
    
    1: 70.00%
    2: 80.00%
    3: 90.00%
    4: 100.00%
    5: 100.00%
    6: 100.00%
    7: 100.00%
    8: 90.00%
    9: 80.00%
    10: 70.00%
    
    2
    10 8
    1 2
    2 3
    3 4
    4 5
    5 6
    6 7
    7 8
    9 10
    
    1: 70.00%
    2: 80.00%
    3: 80.00%
    4: 80.00%
    5: 80.00%
    6: 80.00%
    7: 80.00%
    8: 70.00%
    9: 20.00%
    10: 20.00%
    
    3
    11 10
    1 2
    1 3
    1 4
    4 5
    6 5
    6 7
    6 8
    8 9
    8 10
    10 11
    
    1: 100.00%
    2: 90.91%
    3: 90.91%
    4: 100.00%
    5: 100.00%
    6: 100.00%
    7: 100.00%
    8: 100.00%
    9: 100.00%
    10: 100.00%
    11: 81.82%
    
    4
    2 1
    1 2
    
    1: 100.00%
    2: 100.00%

    题意:统计每个顶点六层范围内所有顶点数占总顶点数比例

    解题思路:对每个顶点进行层序遍历(BFS),在遍历过程中,记录顶点所在层数

    记录层数利用两个标记变量tail,lastest

    tail用于记录当前层的最后一个顶点;在遍历与某个顶点相连的顶点时,lastest用于记录所遍历的当前顶点

    当tail == 出队列的顶点时,说明本层已经遍历完毕,则使tail = 当前的lastest,使其等于下一层的最后一个顶点

    #include <iostream>
    #include <queue>
    #include <iomanip>
    using namespace std;
    
    typedef struct listNode
    {
        int data;
        listNode *next;
    }*plist, nlist;
    
    typedef struct
    {
        plist *listArray;
        int graphSize;
        bool *visited;
        float *sixDegreePercent;
    }*pGraph, nGraph;
    
    pGraph CreateGraph(int size);
    void ConnectGraphVertex(pGraph pG, int vStart, int vEnd);
    void InsertListNode(plist pL, int vertex);
    int BFS(pGraph pG, int vertex);
    void DestoryGraph(pGraph pG);
    
    pGraph CreateGraph(int size)
    {
        pGraph pG = new nGraph;
        pG->graphSize = size;
        pG->listArray = new plist[size];
        pG->visited = new bool[size];
        pG->sixDegreePercent = new float[size];
        for (int i = 0; i < size; i++)
        {
            pG->listArray[i] = new nlist;
            pG->listArray[i]->data = i;
            pG->listArray[i]->next = NULL;
            pG->visited[i] = false;
            pG->sixDegreePercent[i] = 0;
        }
        return pG;
    }
    
    void DestoryGraph(pGraph pG)
    {
        plist tempListHead;
        plist tempListNode;
        for (int i = 0; i < pG->graphSize; i++)
        {
            tempListHead = pG->listArray[i];
            while ( tempListHead != NULL )
            {
                tempListNode = tempListHead;
                tempListHead = tempListHead->next;
                delete tempListNode;
            }
        }
        delete[]pG->listArray;
        delete[]pG->visited;
        delete[]pG->sixDegreePercent;
        delete pG;
    }
    
    void InsertListNode(plist pL, int vertex)
    {
        plist temp = new nlist;
        temp->data = vertex;
        temp->next = pL->next;
        pL->next = temp;
        return;
    }
    
    void ConnectGraphVertex(pGraph pG, int vStart, int vEnd)
    {
        if ( pG == NULL || vStart < 0 || vEnd < 0 || vStart == vEnd )
        {
            return;
        }
        //将vEnd插入vStart链表
        InsertListNode(pG->listArray[vStart], vEnd);
        //将vStart插入vEnd链表
        InsertListNode(pG->listArray[vEnd], vStart);
        return;
    }
    
    int BFS(pGraph pG, int vertex)
    {
        queue<int> que;
        int source;
        plist listIter;
        int lastest;
        int tail = vertex;
        int level = 0;
        int sum = 1;    //将初始结点也算在内
        int maxLayer = 6;
        if ( pG->visited[vertex] == false )
        {
            que.push(vertex);
            pG->visited[vertex] = true;
        }
        while ( que.empty() != true && level < maxLayer )
        {
            source = que.front();
            que.pop();
            //遍历与vertex相连的点
            listIter = pG->listArray[source]->next;
            while ( listIter != NULL )
            {
                if ( pG->visited[listIter->data] == false )
                {
                    pG->visited[listIter->data] = true;
                    sum++;
                    que.push(listIter->data);
                    lastest = listIter->data;
                }
                listIter = listIter->next;
            }
            if ( tail == source )    //判断是否已经遍历完该层所有结点
            {
                level++;
                tail = lastest;
            }
        }
        //完成遍历后,要清空visited的状态
        for ( int i = 0; i < pG->graphSize; i++)
        {
            pG->visited[i] = false;
        }
        return sum;
    }
    
    int main()
    {
        int N, E;
        cin >> N >> E;
        pGraph pG;
        pG = CreateGraph(N + 1);
        int i;
        int    edgeStart, edgeEnd;
        for (i = 0; i < E; i++)
        {
            cin >> edgeStart >> edgeEnd;
            edgeStart;
            edgeEnd;
            ConnectGraphVertex(pG, edgeStart, edgeEnd);
        }
        float percentage;
        int count;
        for (i = 1; i <= N; i++)
        {
            count = BFS(pG, i);
            percentage = (float)count / N * 100;
            cout << fixed << setprecision(2);
            cout << i << ": " << percentage << '%' << endl;
        }
        DestoryGraph(pG);
        return 0;
    }
  • 相关阅读:
    ActiveMQ消息队列技术融合Spring
    ActiveMQ消息队列技术Demo
    网页静态化技术Freemaker
    Solr的基本语法
    Solr的页面展示以及高亮显示
    Solr的了解与配置
    Angular中上传图片到分布式文件服务器FastDFS上
    分布式文件服务器FastDFS的使用
    自我学习笔记01
    数组转换成List集合
  • 原文地址:https://www.cnblogs.com/liangchao/p/4292543.html
Copyright © 2020-2023  润新知