• 05-1. List Components (PAT)


     

    For a given undirected graph with N vertices and E edges, please list all the connected components by both DFS and BFS. Assume that all the vertices are numbered from 0 to N-1. While searching, assume that we always start from the vertex with the smallest index, and visit its adjacent vertices in ascending order of their indices.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives two integers N (0<N<=10) and E, which are the number of vertices and the number of edges, respectively. Then E lines follow, each described an edge by giving the two ends. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print in each line a connected component in the format "{ v1 v2 ... vk }". First print the result obtained by DFS, then by BFS.

    Sample Input:
    8 6
    0 7
    0 1
    2 0
    4 1
    2 4
    3 5
    
    Sample Output:
    { 0 1 4 2 7 }
    { 3 5 }
    { 6 }
    { 0 1 2 7 4 }
    { 3 5 }
    { 6 }

    题意:给出图中各个顶点的连通关系,要求输出DFS与BFS的遍历结果
    解题思路:根据输入建立邻接矩阵,再进行图的遍历,注意:图中可能不是所有顶点都连通的,因此需要对图中每个顶点进行遍历
    #include <iostream>
    #include <string>
    #include <memory.h>
    using namespace std;
    
    typedef struct Graph{
        int *graphMatrix;
        bool *visited;
        int vertexNumber;
    }*pGraph, nGraph;
    
    typedef struct{
        int *queData;
        int queFront;
        int queEnd;
        int MaxSize;
    }*pQue, nQue;
    
    pGraph CreateGraph( int vertexNumber );
    pGraph InsertEdge( pGraph pG, int edgeStart, int edgeEnd );
    void DFS( pGraph pG, int vertex );
    pQue CreateQueue( int queSize );
    bool IsEmptyQ( pQue pQ );
    void AddQ( pQue pQ, int item );
    int DeleteQ( pQue pQ );
    void BFS( pGraph pG, int vertex, int vertexNum );
    
    int main()
    {
        int N, E;
        cin >> N >> E;
        pGraph pG;
        pG = CreateGraph( N );
        int i;
        int    edgeStart, edgeEnd;
        for ( i = 0; i < E; i++ )
        {
            cin >> edgeStart >> edgeEnd;
            InsertEdge( pG, edgeStart, edgeEnd );
        }
        for ( i = 0; i < N; i++ )
        {
            if ( pG->visited[i] == false )
            {
                cout << "{ ";
                DFS( pG, i);
                cout << "}" << endl;
            }
        }
        for ( i = 0; i < N; i++ )    //清空visited状态
        {
            pG->visited[i] = false;
        }
        for ( i = 0; i < N; i++ )
        {
            if ( pG->visited[i] == false )
            {
                cout << "{ ";
                BFS( pG, i, N);
                cout << "}" << endl;
            }
        }
        return 0;
    }
    
    pGraph CreateGraph( int vertexNumber )
    {
        pGraph pG;
        pG = ( pGraph )malloc( sizeof( nGraph ) );
        pG->vertexNumber = vertexNumber;
        int len = ( vertexNumber * ( vertexNumber + 1 ) / 2 );
        pG->graphMatrix = ( int* )malloc( len * sizeof( int ) );
        memset( pG->graphMatrix, 0, sizeof( int ) * len);
        pG->visited = ( bool* )malloc( vertexNumber * sizeof( bool ) );
        memset( pG->visited, false, sizeof( bool ) * vertexNumber );
        return pG;
    }
    
    pGraph InsertEdge( pGraph pG, int edgeStart, int edgeEnd )
    {
        if ( edgeStart >= pG->vertexNumber || edgeEnd >= pG->vertexNumber )
        {
            cout << "Error Edge!" << endl;
            return pG;
        }
        int tmp;
        if ( edgeStart < edgeEnd )
        {
            tmp = edgeStart;
            edgeStart = edgeEnd;
            edgeEnd = tmp;
        }
        int item = edgeStart * ( edgeStart + 1 ) / 2 + edgeEnd;
        pG->graphMatrix[item] = 1;
        return pG;
    }
    
    void DFS( pGraph pG, int vertex )
    {
        if ( pG->visited[vertex] == false )
        {
            cout << vertex << ' ';
        }
        pG->visited[vertex] = true;
        int    rows, cols;
        int materixIndex;
        for ( cols = 0; cols < vertex; cols++ )    //扫描行
        {
            materixIndex = vertex * ( vertex + 1 ) / 2 + cols;
            if ( pG->graphMatrix[materixIndex] == 1 && pG->visited[ cols ] == false )
            {
                DFS( pG, cols );
            }
        }
        for ( rows = vertex; rows < pG->vertexNumber; rows++ )
        {
            materixIndex = rows * ( rows + 1 ) / 2 + vertex;
            if ( pG->graphMatrix[materixIndex] == 1 && pG->visited[ rows ] == false )
            {
                DFS( pG, rows );
            }
        }
    }
    
    
    
    pQue CreateQueue( int queSize )
    {
        pQue pQ;
        pQ = ( pQue )malloc( sizeof( nQue ) );
        pQ->MaxSize = queSize + 1;
        pQ->queData = ( int * )malloc( pQ->MaxSize * sizeof( int ) );
        pQ->queFront = pQ->queEnd = 0;
        return pQ;
    }
    
    bool IsEmptyQ( pQue pQ )
    {
        if ( pQ->queFront == pQ->queEnd )    //队列为空
        {
            return true;
        }
        else
        {
            return false;
        }
    }
    
    void AddQ( pQue pQ, int item )
    {
        if ( ( pQ->queEnd + 1 ) % pQ->MaxSize == pQ->queFront  )
        {
            cout << "Queue Is Full!" << endl;
            return;
        }
        pQ->queEnd = ( pQ->queEnd + 1 ) % pQ->MaxSize;
        pQ->queData[ pQ->queEnd ] = item;
    }
    
    int DeleteQ( pQue pQ )
    {
        if ( pQ->queFront == pQ->queEnd )
        {
            cout << "Queue Is Empty!" << endl;
            return -1;
        }
        else
        {
            pQ->queFront = ( pQ->queFront + 1 ) % pQ->MaxSize;
            return pQ->queData[ pQ->queFront ];
        }
    }
    
    void BFS( pGraph pG, int vertex, int vertexNum )
    {
        cout << vertex << ' ';
        pG->visited[vertex] = true;
        pQue pQ;
        pQ = CreateQueue( vertexNum );
        AddQ( pQ, vertex);
        int cols, rows;
        int materixIndex;
        while ( IsEmptyQ( pQ ) != true )
        {
            vertex = DeleteQ( pQ );
            for ( cols = 0; cols < vertex; cols++ )    //扫描行
            {
                materixIndex = vertex * ( vertex + 1 ) / 2 + cols;
                if ( pG->graphMatrix[materixIndex] == 1 && pG->visited[ cols ] == false )
                {
                    cout << cols << ' ';
                    pG->visited[cols] = true;
                    AddQ( pQ, cols );
                }
            }
            for ( rows = vertex; rows < pG->vertexNumber; rows++ )
            {
                materixIndex = rows * ( rows + 1 ) / 2 + vertex;
                if ( pG->graphMatrix[materixIndex] == 1 && pG->visited[ rows ] == false )
                {
                    cout << rows << ' ';
                    pG->visited[rows] = true;
                    AddQ( pQ, rows );
                }
            }
        }
    }
  • 相关阅读:
    Elasticsearchheader、Kibana实现对ES的可视化
    记录Elasticsearch 分片恢复问题
    跨域问题处理手册
    MySQLJSON与虚拟列结合使用提升性能
    Mysql 备份恢复与xtrabackup备份
    Delphi中将ShowMessage,MessageDlg, MessageBox,InputBox,InputQuery及任意模态窗口相对主窗口(父窗口、母窗口)居中
    Python里的引用与拷贝规律
    「Codeforces 1644F」Basis
    记录
    swift 标签2
  • 原文地址:https://www.cnblogs.com/liangchao/p/4288807.html
Copyright © 2020-2023  润新知