• Pandas 简介


    Pandas 简介

    pandas 是 python 内基于 NumPy 的一种工具,主要目的是为了解决数据分析任务。Pandas 包含了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。

    学习 pandas 需要主要掌握的技能包括

    1. 汇总和计算描述统计,处理缺失数据 ,层次化索引;
    2. 清理、转换、合并、重塑、groupby 技术;
    3. 日期和时间数据类型及工具(日期处理方便地飞起);

    本文参考主要介绍包括 Python科学计算:庖丁解牛之Pandas10 Minutes to pandas

    数据类型

    pandas 包含两个主要数据类型为 SeriesDataFrame,其中 Series 为一位向量,DataFrame 为二维数组。

    import numpy as np
    import pandas as pd
    
    s = pd.Series([1, 3, 5, np.nan, 6, 8])
    

    利用 NumPy 数组可以构造 DataFrame 数组,如下所示

    In [5]: dates = pd.date_range('20130101', periods=6)
    
    In [6]: dates
    Out[6]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
    
    In [8]: df
    Out[8]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    

    数据可视化

    为了对数据进行可视化,pandas包含了多种方法。基本可视化功能包括:观察头部与底部数据

    In [13]: df.head()
    Out[13]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    
    In [14]: df.tail(3)
    Out[14]: 
                       A         B         C         D
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    

    显示数据索引:

    In [15]: df.index
    Out[15]: 
    DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
                   '2013-01-05', '2013-01-06'],
                  dtype='datetime64[ns]', freq='D')
    
    In [16]: df.columns
    Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
    

    DataFrame.to_numpy() 可以将数据转化为 NumPy 数组类型。注意,这种方法在 DataFrame 内包含多种数组类型时可能会需要较长的转化时间,因为 NumPy 仅有一种数据类型。此外,DataFrame.to_numpy() 在输出时候不包括索引和标签列。

    describe() 可以显示数据的快速统计摘要:

    In [19]: df.describe()
    Out[19]: 
                  A         B         C         D
    count  6.000000  6.000000  6.000000  6.000000
    mean   0.073711 -0.431125 -0.687758 -0.233103
    std    0.843157  0.922818  0.779887  0.973118
    min   -0.861849 -2.104569 -1.509059 -1.135632
    25%   -0.611510 -0.600794 -1.368714 -1.076610
    50%    0.022070 -0.228039 -0.767252 -0.386188
    75%    0.658444  0.041933 -0.034326  0.461706
    max    1.212112  0.567020  0.276232  1.071804
    

    数据转置:

    In [20]: df.T
    Out[20]: 
       2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988
    

    按轴排序:

    In [21]: df.sort_index(axis=1, ascending=False)
    Out[21]: 
                       D         C         B         A
    2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
    2013-01-02 -1.044236  0.119209 -0.173215  1.212112
    2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
    2013-01-04  0.271860 -1.039575 -0.706771  0.721555
    2013-01-05 -1.087401  0.276232  0.567020 -0.424972
    2013-01-06  0.524988 -1.478427  0.113648 -0.673690
    

    按值排序:

    In [22]: df.sort_values(by='B')
    Out[22]: 
                       A         B         C         D
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-06 -0.673690  0.113648 -1.478427  0.524988
    2013-01-05 -0.424972  0.567020  0.276232 -1.087401
    

    数据访问

    为了进一步对DataFrame中数据进行操作,需要掌握数据的访问方法。在pandas中,提供了多种数据访问形式。

    切片

    在DataFrame中选取一个单列时,相当于构造一个Series对象

    In [23]: df['A']
    Out[23]: 
    2013-01-01    0.469112
    2013-01-02    1.212112
    2013-01-03   -0.861849
    2013-01-04    0.721555
    2013-01-05   -0.424972
    2013-01-06   -0.673690
    Freq: D, Name: A, dtype: float64
    

    通过 [] 可以对数据部分进行选择,获得仅包含部分索引的切片数据

    In [24]: df[0:3]
    Out[24]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    
    In [25]: df['20130102':'20130104']
    Out[25]: 
                       A         B         C         D
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    

    通过标签切片

    DataFrame中也可以通过数据的标签进行选取。

    首先,DataFrame中数据标签类似于矩阵的列,但是标签除了数字形式,可以有更加直观的名称,如字符串等。下图展示了DataFrame中按照标签截取的主要方法

    同时,也可以按照索引进行切片,在DataFrame中,索引类似矩阵的行号。在调用 loc 进行切片时,只要输入一个参数即可选取特定行

    In [26]: df.loc[dates[0]]
    Out[26]: 
    A    0.469112
    B   -0.282863
    C   -1.509059
    D   -1.135632
    Name: 2013-01-01 00:00:00, dtype: float64
    

    此时截取后数据为原始数据中第一行索引,类型为 Series 数据。
    当然也可以在多轴上选择:

    In [27]: df.loc[:, ['A', 'B']]
    Out[27]: 
                       A         B
    2013-01-01  0.469112 -0.282863
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    2013-01-06 -0.673690  0.113648
    

    其中第一个标签 : 代表选取所有索引。也可以同时选取索引和标签列:

    In [28]: df.loc['20130102':'20130104', ['A', 'B']]
    Out[28]: 
                       A         B
    2013-01-02  1.212112 -0.173215
    2013-01-03 -0.861849 -2.104569
    2013-01-04  0.721555 -0.706771
    

    当确定数据的索引和标签时候,也可以用 at 命令快速访问,iat 为按照序号索引进行访问,二者对应如下午所示

    In [31]: df.at[dates[0], 'A']
    Out[31]: 0.4691122999071863
    

    总结来说,在索引或切片 DataFrame时,可以用基于位置的 at 和 loc,二者功能是相似的。

    通过编号选取

    除了标签,也可以用整数编号对数据某行索引进行选择,与 loc 对应的有 iloc:

    In [32]: df.iloc[3]
    Out[32]: 
    A    0.721555
    B   -0.706771
    C   -1.039575
    D    0.271860
    Name: 2013-01-04 00:00:00, dtype: float64
    

    通过两个序列编号方法则与 numpy 中数据读取类似

    In [33]: df.iloc[3:5, 0:2]
    Out[33]: 
                       A         B
    2013-01-04  0.721555 -0.706771
    2013-01-05 -0.424972  0.567020
    

    也可以用列表形式选取索引

    In [34]: df.iloc[[1, 2, 4], [0, 2]]
    Out[34]: 
                       A         C
    2013-01-02  1.212112  0.119209
    2013-01-03 -0.861849 -0.494929
    2013-01-05 -0.424972  0.276232
    

    也可以用整数编号作为索引快速访问数组内容

    In [38]: df.iat[1, 1]
    Out[38]: -0.17321464905330858
    

    布尔索引

    在 DataFrame 中可以用单列值选择数据

    In [39]: df[df.A > 0]
    Out[39]: 
                       A         B         C         D
    2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
    2013-01-02  1.212112 -0.173215  0.119209 -1.044236
    2013-01-04  0.721555 -0.706771 -1.039575  0.271860
    

    也可以用满足布尔条件的DataFrame中选择值

    In [40]: df[df > 0]
    Out[40]: 
                       A         B         C         D
    2013-01-01  0.469112       NaN       NaN       NaN
    2013-01-02  1.212112       NaN  0.119209       NaN
    2013-01-03       NaN       NaN       NaN  1.071804
    2013-01-04  0.721555       NaN       NaN  0.271860
    2013-01-05       NaN  0.567020  0.276232       NaN
    2013-01-06       NaN  0.113648       NaN  0.524988
    

    赋值

    当为DataFrame赋值新的列时,将按照索引自动对齐数据。

    In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))
    
    In [46]: s1
    Out[46]: 
    2013-01-02    1
    2013-01-03    2
    2013-01-04    3
    2013-01-05    4
    2013-01-06    5
    2013-01-07    6
    Freq: D, dtype: int64
    
    In [47]: df['F'] = s1
    

    按照上面数据读取方法,也可按照索引进行赋值:

    In [48]: df.at[dates[0], 'A'] = 0
    In [49]: df.iat[0, 1] = 0
    In [50]: df.loc[:, 'D'] = np.array([5] * len(df))
    

    缺失数据处理

    重新索引时允许更改/删除/添加指定轴上索引,并返回数据的副本

    In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
    
    In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1
    
    In [57]: df1
    Out[57]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN
    

    删除缺少数据行可以用 dropna 方法计算

    In [58]: df1.dropna(how='any')
    Out[58]: 
                       A         B         C  D    F    E
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    

    也可用 fillna 填充丢失数据

    In [59]: df1.fillna(value=5)
    Out[59]: 
                       A         B         C  D    F    E
    2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
    2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
    2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
    2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0
    

    数据操作

    数据统计

    可以用函数对各列或行数据进行统计

    In [61]: df.mean()
    Out[61]: 
    A   -0.004474
    B   -0.383981
    C   -0.687758
    D    5.000000
    F    3.000000
    dtype: float64
    
    In [62]: df.mean(1)
    Out[62]: 
    2013-01-01    0.872735
    2013-01-02    1.431621
    2013-01-03    0.707731
    2013-01-04    1.395042
    2013-01-05    1.883656
    2013-01-06    1.592306
    Freq: D, dtype: float64
    

    函数计算

    可以将函数应用于数据计算

    In [66]: df.apply(np.cumsum)
    Out[66]: 
                       A         B         C   D     F
    2013-01-01  0.000000  0.000000 -1.509059   5   NaN
    2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
    2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
    2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
    2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
    2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0
    
    In [67]: df.apply(lambda x: x.max() - x.min())
    Out[67]: 
    A    2.073961
    B    2.671590
    C    1.785291
    D    0.000000
    F    4.000000
    dtype: float64
    

    字符串方法

    Series 在 str 属性中配备了字符串方法,可以对数据每个元素进行操作。

    In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    
    In [72]: s.str.lower()
    Out[72]: 
    0       a
    1       b
    2       c
    3    aaba
    4    baca
    5     NaN
    6    caba
    7     dog
    8     cat
    dtype: object
    

    数据合并

    数据结合

    pandas 可将 Series 和 DataFrame 对象与各种用于索引和关系的功能组合在一起。

    In [73]: df = pd.DataFrame(np.random.randn(10, 4))
    
    In [74]: df
    Out[74]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    
    # break it into pieces
    In [75]: pieces = [df[:3], df[3:7], df[7:]]
    
    In [76]: pd.concat(pieces)
    Out[76]: 
              0         1         2         3
    0 -0.548702  1.467327 -1.015962 -0.483075
    1  1.637550 -1.217659 -0.291519 -1.745505
    2 -0.263952  0.991460 -0.919069  0.266046
    3 -0.709661  1.669052  1.037882 -1.705775
    4 -0.919854 -0.042379  1.247642 -0.009920
    5  0.290213  0.495767  0.362949  1.548106
    6 -1.131345 -0.089329  0.337863 -0.945867
    7 -0.932132  1.956030  0.017587 -0.016692
    8 -0.575247  0.254161 -1.143704  0.215897
    9  1.193555 -0.077118 -0.408530 -0.862495
    

    插入

    插入时可按照 SQL 样式进行插入

    In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    
    In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    
    In [79]: left
    Out[79]: 
       key  lval
    0  foo     1
    1  foo     2
    
    In [80]: right
    Out[80]: 
       key  rval
    0  foo     4
    1  foo     5
    
    In [81]: pd.merge(left, right, on='key')
    Out[81]: 
       key  lval  rval
    0  foo     1     4
    1  foo     1     5
    2  foo     2     4
    3  foo     2     5
    

    另一个类似的示例为

    In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
    
    In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
    
    In [84]: left
    Out[84]: 
       key  lval
    0  foo     1
    1  bar     2
    
    In [85]: right
    Out[85]: 
       key  rval
    0  foo     4
    1  bar     5
    
    In [86]: pd.merge(left, right, on='key')
    Out[86]: 
       key  lval  rval
    0  foo     1     4
    1  bar     2     5
    

    增加数据

    append 命令可以增加数据

    In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])
    
    In [88]: df
    Out[88]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    
    In [89]: s = df.iloc[3]
    
    In [90]: df.append(s, ignore_index=True)
    Out[90]: 
              A         B         C         D
    0  1.346061  1.511763  1.627081 -0.990582
    1 -0.441652  1.211526  0.268520  0.024580
    2 -1.577585  0.396823 -0.105381 -0.532532
    3  1.453749  1.208843 -0.080952 -0.264610
    4 -0.727965 -0.589346  0.339969 -0.693205
    5 -0.339355  0.593616  0.884345  1.591431
    6  0.141809  0.220390  0.435589  0.192451
    7 -0.096701  0.803351  1.715071 -0.708758
    8  1.453749  1.208843 -0.080952 -0.264610
    

    数据分组

    数据分组可将 DataFrame 中功能独立地应用于每个组

    In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
       ....:                          'foo', 'bar', 'foo', 'foo'],
       ....:                    'B': ['one', 'one', 'two', 'three',
       ....:                          'two', 'two', 'one', 'three'],
       ....:                    'C': np.random.randn(8),
       ....:                    'D': np.random.randn(8)})
       ....: 
    
    In [92]: df
    Out[92]: 
         A      B         C         D
    0  foo    one -1.202872 -0.055224
    1  bar    one -1.814470  2.395985
    2  foo    two  1.018601  1.552825
    3  bar  three -0.595447  0.166599
    4  foo    two  1.395433  0.047609
    5  bar    two -0.392670 -0.136473
    6  foo    one  0.007207 -0.561757
    7  foo  three  1.928123 -1.623033
    
    In [93]: df.groupby('A').sum()
    Out[93]: 
                C        D
    A                     
    bar -2.802588  2.42611
    foo  3.146492 -0.63958
    

    数据重构

    首先对 DataFram 数据表进行初始化

    In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
       .....:                    'B': ['A', 'B', 'C'] * 4,
       .....:                    'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
       .....:                    'D': np.random.randn(12),
       .....:                    'E': np.random.randn(12)})
       .....: 
    
    In [106]: df
    Out[106]: 
            A  B    C         D         E
    0     one  A  foo  1.418757 -0.179666
    1     one  B  foo -1.879024  1.291836
    2     two  C  foo  0.536826 -0.009614
    3   three  A  bar  1.006160  0.392149
    4     one  B  bar -0.029716  0.264599
    5     one  C  bar -1.146178 -0.057409
    6     two  A  foo  0.100900 -1.425638
    7   three  B  foo -1.035018  1.024098
    8     one  C  foo  0.314665 -0.106062
    9     one  A  bar -0.773723  1.824375
    10    two  B  bar -1.170653  0.595974
    11  three  C  bar  0.648740  1.167115
    

    数据透视表可通过 pivot_table 方法生成数据透视表,其中 values 为表值,index 为透视表索引,columns 为数据列名。

    In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
    Out[107]: 
    C             bar       foo
    A     B                    
    one   A -0.773723  1.418757
          B -0.029716 -1.879024
          C -1.146178  0.314665
    three A  1.006160       NaN
          B       NaN -1.035018
          C  0.648740       NaN
    two   A       NaN  0.100900
          B -1.170653       NaN
          C       NaN  0.536826
    

    时间序列

    数据类别

    数据绘图

    当使用 plot 函数时,可以很方便地绘制带有标签的所有列,并在图例中显示对应的标签名:

    In [135]: ts = pd.Series(np.random.randn(1000),
       .....:                index=pd.date_range('1/1/2000', periods=1000))
       .....: 
    
    In [136]: ts = ts.cumsum()
    
    In [137]: ts.plot()
    Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f24a8b314d0>
    

    数据IO

    pandas 可从多种类型文件中获取数据,例如可以写入或读取csv文件

    In [143]: df.to_csv('foo.csv')
    
    In [144]: pd.read_csv('foo.csv')
    Out[144]: 
         Unnamed: 0          A          B         C          D
    0    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    1    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    3    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    4    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    ..          ...        ...        ...       ...        ...
    995  2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    996  2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    997  2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    998  2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    999  2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 5 columns]
    

    写入或读取 HDF5 文件

    In [145]: df.to_hdf('foo.h5', 'df')
    
    In [146]: pd.read_hdf('foo.h5', 'df')
    Out[146]: 
                        A          B         C          D
    2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    2000-01-05   0.578117   0.511371  0.103552  -2.428202
    ...               ...        ...       ...        ...
    2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 4 columns]
    

    写入或读取 excel 文件

    In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
    
    In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
    Out[148]: 
        Unnamed: 0          A          B         C          D
    0   2000-01-01   0.266457  -0.399641 -0.219582   1.186860
    1   2000-01-02  -1.170732  -0.345873  1.653061  -0.282953
    2   2000-01-03  -1.734933   0.530468  2.060811  -0.515536
    3   2000-01-04  -1.555121   1.452620  0.239859  -1.156896
    4   2000-01-05   0.578117   0.511371  0.103552  -2.428202
    ..         ...        ...        ...       ...        ...
    995 2002-09-22  -8.985362  -8.485624 -4.669462  31.367740
    996 2002-09-23  -9.558560  -8.781216 -4.499815  30.518439
    997 2002-09-24  -9.902058  -9.340490 -4.386639  30.105593
    998 2002-09-25 -10.216020  -9.480682 -3.933802  29.758560
    999 2002-09-26 -11.856774 -10.671012 -3.216025  29.369368
    
    [1000 rows x 5 columns]
    
  • 相关阅读:
    通过wifi上网,桥接模式下virtualBox虚拟机无法连上网的解决办法
    Djangio笔记
    nginx hello模块代码
    nginx 访问第三方服务(1)
    ngxin error日志
    lvs 负载均衡 NAT模式
    nginx location的命中过程
    linux epoll总结
    【转】操作系统 gdt ldt
    linux文件系统
  • 原文地址:https://www.cnblogs.com/li12242/p/11618521.html
Copyright © 2020-2023  润新知