• R可视化lend_club 全球最大的P2P平台数据75W条


    lend_club 全球最大的P2P平台2007~2012年贷款数据百度云下载
    此文章基于R语言做简单分析。

    rm(list=ls())  #清除变量
    gc()           #释放内存
    
    • step1
      考虑到后续分析
      将数据导入sqlserver,用到SSIS
      如图


    **此处有坑

    • step2
      连接sqlserver,并将数据读入R。
    library(RODBC)
    con<-odbcConnect("LI")   # LI 是本地数据库,con~connect 是本地连接
    
    RODBC Connection 2
    Details:
      case=nochange
      DSN=LI
      UID=
      Trusted_Connection=Yes
      APP=RStudio
      WSID=LIYI-PC
    
    lend_club1<-sqlQuery(con,"SELECT sum([Amount Requested]) as sumamount
          ,[Application Date] as date_1
          ,[year]
                   ,substring(convert(varchar(12),[Application Date],111),6,5) as month_day
                   FROM [liyi_test].[dbo].[lend_club]
                   group by [year],substring(convert(varchar(12),[Application Date],111),6,5),[Application Date]
                   order by [year],[month_day]")
    
    head(lend_club1)
    sumamount     date_1 year month_day
    1      2000 2007-05-26 2007     05/26
    2     47400 2007-05-27 2007     05/27
    3     23900 2007-05-28 2007     05/28
    4    121050 2007-05-29 2007     05/29
    5     87500 2007-05-30 2007     05/30
    6     46500 2007-05-31 2007     05/31
    
    • step3
    library(ggplot2)
    
    qplot(date_1,sumamount,data=lend_club1,geom="line") # 每天贷款金额的时序图
    

    p<-qplot(month_day,sumamount,data=lend_club1)
    p+facet_wrap(~year) #2007-2012 期间每日的贷款金额
    

    library(tidyr)
    library(dplyr)
    lend_club2<-separate(lend_club1,date_1,c("y","m","d"),sep="-")
    head(lend_club2)
      sumamount    y  m  d year month_day
    1      2000 2007 05 26 2007     05/26
    2     47400 2007 05 27 2007     05/27
    3     23900 2007 05 28 2007     05/28
    4    121050 2007 05 29 2007     05/29
    5     87500 2007 05 30 2007     05/30
    6     46500 2007 05 31 2007     05/31
    
    lend_club3<-unite(lend_club2,"y_m",y,m,sep="-",remove = F)
    head(lend_club3)
      sumamount     y_m    y  m  d year month_day
    1      2000 2007-05 2007 05 26 2007     05/26
    2     47400 2007-05 2007 05 27 2007     05/27
    3     23900 2007-05 2007 05 28 2007     05/28
    4    121050 2007-05 2007 05 29 2007     05/29
    5     87500 2007-05 2007 05 30 2007     05/30
    6     46500 2007-05 2007 05 31 2007     05/31
    
    qplot(m,sumamount,data=lend_club3,geom=c("boxplot")+facet_wrap(~year) #2007~2012年每月贷款金额的箱线图
    
    

    lend_club4<- lend_club3%>%
      group_by(m,y)%>%
      summarise(total_m=sum(sumamount))
    
    lend_club4
    head(lend_club4)
    Source: local data frame [6 x 3]
    Groups: m [2]
    
          m     y   total_m
      (chr) (chr)     (dbl)
    1    01  2008  32256329
    2    01  2009  28523635
    3    01  2010  63082946
    4    01  2011 171186425
    5    01  2012 297667575
    6    02  2008  20596688
    
    折线图 分面
    p<-qplot(m,total_m,data=lend_club4)+geom_smooth(aes(group=y,colour=y),method = "lm") 
     
    

    折线图 分面

    p<-qplot(m,total_m,data=lend_club4)+geom_smooth(aes(group=y,colour=y))
    

    p+facet_wrap(~y)
    

    lend<-read.csv("C:\Users\liyi\Desktop\lend_club.csv")
    lend1<-read.csv("C:\Users\liyi\Desktop\lend_club.csv",header = F)
    lend1<-lend1[-1,]
    head(lend1)
    lend1<-lend1[,c(1,3,9)]
    myvar<-c("amount","year","employment")
    names(lend1)<-myvar
    head(lend1)
    str(lend1)
    lend1$amountnew<-as.numeric(as.character(lend1$amount))
    
    library(sqldf)
    
    lend2<-sqldf('select sum(V1),V3,V9
                 from lend1
                 group by V3,V9')
    q<-qplot(employment,amountnew,data = lend1,geom=c("boxplot"),colour=lend1$employment)+facet_wrap(~year)
    q<- q+theme(axis.text.x=element_text(angle=90,hjust=1,colour="black"),legend.position='none')
    q<- q+scale_y_continuous(limits = c(0, 100000))
    q
    
    

  • 相关阅读:
    最近的一些心理活动
    object_c函数多个返回值
    nslayoutConstraint
    判断一些常用的东西
    color 的一些处理
    最近的心理活动
    加载不同的nib文件
    Be a person
    按钮居左显示
    SQLite错误码
  • 原文地址:https://www.cnblogs.com/li-volleyball/p/5722049.html
Copyright © 2020-2023  润新知