• R语言进行数据预处理wranging


    R语言进行数据预处理wranging

    li_volleyball

    2016年3月22日

    data wrangling with R
    packages:tidyr dplyr

    Ground rules
    
    library(tidyr)
    library(dplyr)
    ## 
    ## Attaching package: 'dplyr'
    ## The following objects are masked from 'package:stats':
    ## 
    ##     filter, lag
    ## The following objects are masked from 'package:base':
    ## 
    ##     intersect, setdiff, setequal, union
    View(iris)
    View(mtcars)
    select(mtcars,am:1)
    ##                     am vs  qsec    wt drat  hp  disp cyl  mpg
    ## Mazda RX4            1  0 16.46 2.620 3.90 110 160.0   6 21.0
    ## Mazda RX4 Wag        1  0 17.02 2.875 3.90 110 160.0   6 21.0
    ## Datsun 710           1  1 18.61 2.320 3.85  93 108.0   4 22.8
    ## Hornet 4 Drive       0  1 19.44 3.215 3.08 110 258.0   6 21.4
    ## Hornet Sportabout    0  0 17.02 3.440 3.15 175 360.0   8 18.7
    ## Valiant              0  1 20.22 3.460 2.76 105 225.0   6 18.1
    ## Duster 360           0  0 15.84 3.570 3.21 245 360.0   8 14.3
    ## Merc 240D            0  1 20.00 3.190 3.69  62 146.7   4 24.4
    ## Merc 230             0  1 22.90 3.150 3.92  95 140.8   4 22.8
    ## Merc 280             0  1 18.30 3.440 3.92 123 167.6   6 19.2
    ## Merc 280C            0  1 18.90 3.440 3.92 123 167.6   6 17.8
    ## Merc 450SE           0  0 17.40 4.070 3.07 180 275.8   8 16.4
    ## Merc 450SL           0  0 17.60 3.730 3.07 180 275.8   8 17.3
    ## Merc 450SLC          0  0 18.00 3.780 3.07 180 275.8   8 15.2
    ## Cadillac Fleetwood   0  0 17.98 5.250 2.93 205 472.0   8 10.4
    ## Lincoln Continental  0  0 17.82 5.424 3.00 215 460.0   8 10.4
    ## Chrysler Imperial    0  0 17.42 5.345 3.23 230 440.0   8 14.7
    ## Fiat 128             1  1 19.47 2.200 4.08  66  78.7   4 32.4
    ## Honda Civic          1  1 18.52 1.615 4.93  52  75.7   4 30.4
    ## Toyota Corolla       1  1 19.90 1.835 4.22  65  71.1   4 33.9
    ## Toyota Corona        0  1 20.01 2.465 3.70  97 120.1   4 21.5
    ## Dodge Challenger     0  0 16.87 3.520 2.76 150 318.0   8 15.5
    ## AMC Javelin          0  0 17.30 3.435 3.15 150 304.0   8 15.2
    ## Camaro Z28           0  0 15.41 3.840 3.73 245 350.0   8 13.3
    ## Pontiac Firebird     0  0 17.05 3.845 3.08 175 400.0   8 19.2
    ## Fiat X1-9            1  1 18.90 1.935 4.08  66  79.0   4 27.3
    ## Porsche 914-2        1  0 16.70 2.140 4.43  91 120.3   4 26.0
    ## Lotus Europa         1  1 16.90 1.513 3.77 113  95.1   4 30.4
    ## Ford Pantera L       1  0 14.50 3.170 4.22 264 351.0   8 15.8
    ## Ferrari Dino         1  0 15.50 2.770 3.62 175 145.0   6 19.7
    ## Maserati Bora        1  0 14.60 3.570 3.54 335 301.0   8 15.0
    ## Volvo 142E           1  1 18.60 2.780 4.11 109 121.0   4 21.4
    mtcars %>% select(am:1)
    ##                     am vs  qsec    wt drat  hp  disp cyl  mpg
    ## Mazda RX4            1  0 16.46 2.620 3.90 110 160.0   6 21.0
    ## Mazda RX4 Wag        1  0 17.02 2.875 3.90 110 160.0   6 21.0
    ## Datsun 710           1  1 18.61 2.320 3.85  93 108.0   4 22.8
    ## Hornet 4 Drive       0  1 19.44 3.215 3.08 110 258.0   6 21.4
    ## Hornet Sportabout    0  0 17.02 3.440 3.15 175 360.0   8 18.7
    ## Valiant              0  1 20.22 3.460 2.76 105 225.0   6 18.1
    ## Duster 360           0  0 15.84 3.570 3.21 245 360.0   8 14.3
    ## Merc 240D            0  1 20.00 3.190 3.69  62 146.7   4 24.4
    ## Merc 230             0  1 22.90 3.150 3.92  95 140.8   4 22.8
    ## Merc 280             0  1 18.30 3.440 3.92 123 167.6   6 19.2
    ## Merc 280C            0  1 18.90 3.440 3.92 123 167.6   6 17.8
    ## Merc 450SE           0  0 17.40 4.070 3.07 180 275.8   8 16.4
    ## Merc 450SL           0  0 17.60 3.730 3.07 180 275.8   8 17.3
    ## Merc 450SLC          0  0 18.00 3.780 3.07 180 275.8   8 15.2
    ## Cadillac Fleetwood   0  0 17.98 5.250 2.93 205 472.0   8 10.4
    ## Lincoln Continental  0  0 17.82 5.424 3.00 215 460.0   8 10.4
    ## Chrysler Imperial    0  0 17.42 5.345 3.23 230 440.0   8 14.7
    ## Fiat 128             1  1 19.47 2.200 4.08  66  78.7   4 32.4
    ## Honda Civic          1  1 18.52 1.615 4.93  52  75.7   4 30.4
    ## Toyota Corolla       1  1 19.90 1.835 4.22  65  71.1   4 33.9
    ## Toyota Corona        0  1 20.01 2.465 3.70  97 120.1   4 21.5
    ## Dodge Challenger     0  0 16.87 3.520 2.76 150 318.0   8 15.5
    ## AMC Javelin          0  0 17.30 3.435 3.15 150 304.0   8 15.2
    ## Camaro Z28           0  0 15.41 3.840 3.73 245 350.0   8 13.3
    ## Pontiac Firebird     0  0 17.05 3.845 3.08 175 400.0   8 19.2
    ## Fiat X1-9            1  1 18.90 1.935 4.08  66  79.0   4 27.3
    ## Porsche 914-2        1  0 16.70 2.140 4.43  91 120.3   4 26.0
    ## Lotus Europa         1  1 16.90 1.513 3.77 113  95.1   4 30.4
    ## Ford Pantera L       1  0 14.50 3.170 4.22 264 351.0   8 15.8
    ## Ferrari Dino         1  0 15.50 2.770 3.62 175 145.0   6 19.7
    ## Maserati Bora        1  0 14.60 3.570 3.54 335 301.0   8 15.0
    ## Volvo 142E           1  1 18.60 2.780 4.11 109 121.0   4 21.4
    example1<-data.frame(A=c(paste("x",1:6,sep = "")),
                         B=seq(1,11,2),
                         c=1:6,
                         date=c("2000-08-15","1998-07-15","1995-06-04","1997-07-01","1999-06-01","1996-06-25"))
    example1
    ##    A  B c       date
    ## 1 x1  1 1 2000-08-15
    ## 2 x2  3 2 1998-07-15
    ## 3 x3  5 3 1995-06-04
    ## 4 x4  7 4 1997-07-01
    ## 5 x5  9 5 1999-06-01
    ## 6 x6 11 6 1996-06-25
    # 一个变量一列
    # 一个观测值一行
    #每一种观测在一个表里
    #separate()
    separate(example1,date,c("Y","m","d"),sep="-")
    ##    A  B c    Y  m  d
    ## 1 x1  1 1 2000 08 15
    ## 2 x2  3 2 1998 07 15
    ## 3 x3  5 3 1995 06 04
    ## 4 x4  7 4 1997 07 01
    ## 5 x5  9 5 1999 06 01
    ## 6 x6 11 6 1996 06 25
    example12<-example1 %>% separate(date,c("Y","m","d"),sep="-")
    #unite()
    unite(example12,"YM",Y,m,sep="-")
    ##    A  B c      YM  d
    ## 1 x1  1 1 2000-08 15
    ## 2 x2  3 2 1998-07 15
    ## 3 x3  5 3 1995-06 04
    ## 4 x4  7 4 1997-07 01
    ## 5 x5  9 5 1999-06 01
    ## 6 x6 11 6 1996-06 25
    #select()
    select(example1,A,B)
    ##    A  B
    ## 1 x1  1
    ## 2 x2  3
    ## 3 x3  5
    ## 4 x4  7
    ## 5 x5  9
    ## 6 x6 11
    select(example1,-A)
    ##    B c       date
    ## 1  1 1 2000-08-15
    ## 2  3 2 1998-07-15
    ## 3  5 3 1995-06-04
    ## 4  7 4 1997-07-01
    ## 5  9 5 1999-06-01
    ## 6 11 6 1996-06-25
    select(example1,B:date)
    ##    B c       date
    ## 1  1 1 2000-08-15
    ## 2  3 2 1998-07-15
    ## 3  5 3 1995-06-04
    ## 4  7 4 1997-07-01
    ## 5  9 5 1999-06-01
    ## 6 11 6 1996-06-25
    select(example1,starts_with("d"))
    ##         date
    ## 1 2000-08-15
    ## 2 1998-07-15
    ## 3 1995-06-04
    ## 4 1997-07-01
    ## 5 1999-06-01
    ## 6 1996-06-25
    select(example1,ends_with("e"))
    ##         date
    ## 1 2000-08-15
    ## 2 1998-07-15
    ## 3 1995-06-04
    ## 4 1997-07-01
    ## 5 1999-06-01
    ## 6 1996-06-25
    select(example1,contains("a"))
    ##    A       date
    ## 1 x1 2000-08-15
    ## 2 x2 1998-07-15
    ## 3 x3 1995-06-04
    ## 4 x4 1997-07-01
    ## 5 x5 1999-06-01
    ## 6 x6 1996-06-25
    #filter()
    filter(example1,B>=6)
    ##    A  B c       date
    ## 1 x4  7 4 1997-07-01
    ## 2 x5  9 5 1999-06-01
    ## 3 x6 11 6 1996-06-25
    filter(example1,B>=6,A%in%c("x1","x4","x5"))
    ##    A B c       date
    ## 1 x4 7 4 1997-07-01
    ## 2 x5 9 5 1999-06-01
    #mutate()
    mutate(example1,ratio=B/c)
    ##    A  B c       date    ratio
    ## 1 x1  1 1 2000-08-15 1.000000
    ## 2 x2  3 2 1998-07-15 1.500000
    ## 3 x3  5 3 1995-06-04 1.666667
    ## 4 x4  7 4 1997-07-01 1.750000
    ## 5 x5  9 5 1999-06-01 1.800000
    ## 6 x6 11 6 1996-06-25 1.833333
    mutate(example1,ratio=B/c,inverse=ratio-1)
    ##    A  B c       date    ratio   inverse
    ## 1 x1  1 1 2000-08-15 1.000000 0.0000000
    ## 2 x2  3 2 1998-07-15 1.500000 0.5000000
    ## 3 x3  5 3 1995-06-04 1.666667 0.6666667
    ## 4 x4  7 4 1997-07-01 1.750000 0.7500000
    ## 5 x5  9 5 1999-06-01 1.800000 0.8000000
    ## 6 x6 11 6 1996-06-25 1.833333 0.8333333
    mutate(example1,cumsum(B))
    ##    A  B c       date cumsum(B)
    ## 1 x1  1 1 2000-08-15         1
    ## 2 x2  3 2 1998-07-15         4
    ## 3 x3  5 3 1995-06-04         9
    ## 4 x4  7 4 1997-07-01        16
    ## 5 x5  9 5 1999-06-01        25
    ## 6 x6 11 6 1996-06-25        36
    mutate(example1,cumsum(B),cummean(B),cumany(B>6),cumall(B>6))
    ##    A  B c       date cumsum(B) cummean(B) cumany(B > 6) cumall(B > 6)
    ## 1 x1  1 1 2000-08-15         1          1         FALSE         FALSE
    ## 2 x2  3 2 1998-07-15         4          2         FALSE         FALSE
    ## 3 x3  5 3 1995-06-04         9          3         FALSE         FALSE
    ## 4 x4  7 4 1997-07-01        16          4          TRUE         FALSE
    ## 5 x5  9 5 1999-06-01        25          5          TRUE         FALSE
    ## 6 x6 11 6 1996-06-25        36          6          TRUE         FALSE
    mutate(example1,cummin(B),cummax(B))
    ##    A  B c       date cummin(B) cummax(B)
    ## 1 x1  1 1 2000-08-15         1         1
    ## 2 x2  3 2 1998-07-15         1         3
    ## 3 x3  5 3 1995-06-04         1         5
    ## 4 x4  7 4 1997-07-01         1         7
    ## 5 x5  9 5 1999-06-01         1         9
    ## 6 x6 11 6 1996-06-25         1        11
    mutate(example1,between(B,4,8))
    ##    A  B c       date between(B, 4, 8)
    ## 1 x1  1 1 2000-08-15            FALSE
    ## 2 x2  3 2 1998-07-15            FALSE
    ## 3 x3  5 3 1995-06-04             TRUE
    ## 4 x4  7 4 1997-07-01             TRUE
    ## 5 x5  9 5 1999-06-01            FALSE
    ## 6 x6 11 6 1996-06-25            FALSE
    mutate(example1,cume_dist(B))
    ##    A  B c       date cume_dist(B)
    ## 1 x1  1 1 2000-08-15    0.1666667
    ## 2 x2  3 2 1998-07-15    0.3333333
    ## 3 x3  5 3 1995-06-04    0.5000000
    ## 4 x4  7 4 1997-07-01    0.6666667
    ## 5 x5  9 5 1999-06-01    0.8333333
    ## 6 x6 11 6 1996-06-25    1.0000000
    example1 %>% mutate(ratio=B/c) %>% select(A,ratio)
    ##    A    ratio
    ## 1 x1 1.000000
    ## 2 x2 1.500000
    ## 3 x3 1.666667
    ## 4 x4 1.750000
    ## 5 x5 1.800000
    ## 6 x6 1.833333
    #cume_dist=相对位置(行序号)/绝对行数
    
    #gather() and spread()
    example2<-data.frame(country=c("FR","DE","US"),
                         "2011"=c(7000,5800,15000),
                         "2012"=c(6900,6000,14000),
                         "2013"=c(7000,6200,13000),check.names=F)
    example2
    ##   country  2011  2012  2013
    ## 1      FR  7000  6900  7000
    ## 2      DE  5800  6000  6200
    ## 3      US 15000 14000 13000
    #gather()
    gather(example2,"year","amount",2:4)
    ##   country year amount
    ## 1      FR 2011   7000
    ## 2      DE 2011   5800
    ## 3      US 2011  15000
    ## 4      FR 2012   6900
    ## 5      DE 2012   6000
    ## 6      US 2012  14000
    ## 7      FR 2013   7000
    ## 8      DE 2013   6200
    ## 9      US 2013  13000
    example2 %>% gather("year","amount",2:4)
    ##   country year amount
    ## 1      FR 2011   7000
    ## 2      DE 2011   5800
    ## 3      US 2011  15000
    ## 4      FR 2012   6900
    ## 5      DE 2012   6000
    ## 6      US 2012  14000
    ## 7      FR 2013   7000
    ## 8      DE 2013   6200
    ## 9      US 2013  13000
    #spread()
    
    example3<-data.frame(city=c("NY","NY","LD","LD","BJ","BJ"),
                         size=rep(c("large","small"),3),
                         n=c(23,147,22,16,121,56))
    
    example3
    ##   city  size   n
    ## 1   NY large  23
    ## 2   NY small 147
    ## 3   LD large  22
    ## 4   LD small  16
    ## 5   BJ large 121
    ## 6   BJ small  56
    spread(example3,size,n)
    ##   city large small
    ## 1   BJ   121    56
    ## 2   LD    22    16
    ## 3   NY    23   147
    example3 %>% spread(size,n)
    ##   city large small
    ## 1   BJ   121    56
    ## 2   LD    22    16
    ## 3   NY    23   147
    #summarise()
    example3 %>% summarise(median=median(n),variance=var(n))
    ##   median variance
    ## 1   39.5 3190.167
    example3 %>% summarise(mean = mean(n), sum = sum(n), n = n())
    ##       mean sum n
    ## 1 64.16667 385 6
    #arrange()
    arrange(example3,n)
    ##   city  size   n
    ## 1   LD small  16
    ## 2   LD large  22
    ## 3   NY large  23
    ## 4   BJ small  56
    ## 5   BJ large 121
    ## 6   NY small 147
    arrange(example3,desc(n))
    ##   city  size   n
    ## 1   NY small 147
    ## 2   BJ large 121
    ## 3   BJ small  56
    ## 4   NY large  23
    ## 5   LD large  22
    ## 6   LD small  16
    #unite of analiysis
    example3 %>% group_by(city)
    ## Source: local data frame [6 x 3]
    ## Groups: city [3]
    ## 
    ##     city   size     n
    ##   (fctr) (fctr) (dbl)
    ## 1     NY  large    23
    ## 2     NY  small   147
    ## 3     LD  large    22
    ## 4     LD  small    16
    ## 5     BJ  large   121
    ## 6     BJ  small    56
    example3 %>% group_by(city) %>% summarise(mean=mean(n),sum=sum(n))
    ## Source: local data frame [3 x 3]
    ## 
    ##     city  mean   sum
    ##   (fctr) (dbl) (dbl)
    ## 1     BJ  88.5   177
    ## 2     LD  19.0    38
    ## 3     NY  85.0   170
    example3 %>% group_by(size) %>% summarise(mean=mean(n))
    ## Source: local data frame [2 x 2]
    ## 
    ##     size     mean
    ##   (fctr)    (dbl)
    ## 1  large 55.33333
    ## 2  small 73.00000
    #joining data
    X<-data.frame(x1=c("A","B","C","D"),x2=1:4,stringsAsFactors = F)
    X
    ##   x1 x2
    ## 1  A  1
    ## 2  B  2
    ## 3  C  3
    ## 4  D  4
    Y<-data.frame(y1=c("B","C","D","E"),y2=seq(2,8,2),stringsAsFactors = F)
    Y
    ##   y1 y2
    ## 1  B  2
    ## 2  C  4
    ## 3  D  6
    ## 4  E  8
    X1<-data.frame(x1=c("B","C","D","E"),x2=2:5,stringsAsFactors = F)
    bind_cols(X,Y)
    ## Source: local data frame [4 x 4]
    ## 
    ##      x1    x2    y1    y2
    ##   (chr) (int) (chr) (dbl)
    ## 1     A     1     B     2
    ## 2     B     2     C     4
    ## 3     C     3     D     6
    ## 4     D     4     E     8
    bind_rows(X,Y)
    ## Source: local data frame [8 x 4]
    ## 
    ##      x1    x2    y1    y2
    ##   (chr) (int) (chr) (dbl)
    ## 1     A     1    NA    NA
    ## 2     B     2    NA    NA
    ## 3     C     3    NA    NA
    ## 4     D     4    NA    NA
    ## 5    NA    NA     B     2
    ## 6    NA    NA     C     4
    ## 7    NA    NA     D     6
    ## 8    NA    NA     E     8
    bind_rows(X,X1)
    ## Source: local data frame [8 x 2]
    ## 
    ##      x1    x2
    ##   (chr) (int)
    ## 1     A     1
    ## 2     B     2
    ## 3     C     3
    ## 4     D     4
    ## 5     B     2
    ## 6     C     3
    ## 7     D     4
    ## 8     E     5
    left_join(X,X1,by="x1")
    ##   x1 x2.x x2.y
    ## 1  A    1   NA
    ## 2  B    2    2
    ## 3  C    3    3
    ## 4  D    4    4
    inner_join(X,X1,by="x1")
    ##   x1 x2.x x2.y
    ## 1  B    2    2
    ## 2  C    3    3
    ## 3  D    4    4
    semi_join(X,X1,by="x1")
    ##   x1 x2
    ## 1  B  2
    ## 2  C  3
    ## 3  D  4
    anti_join(X,X1,bu="x1")
    ## Joining by: c("x1", "x2")
    ##   x1 x2
    ## 1  A  1
    anti_join(X1,X,by="x1")
    ##   x1 x2
    ## 1  E  5
    setdiff(X,X1)
    ##   x1 x2
    ## 1  A  1
    setdiff(X1,X)
    ##   x1 x2
    ## 1  E  5
    first <- mtcars[1:20,1:5 ]
    second <- mtcars[10:32,1:5 ]
    
    intersect(first, second)
    ##     mpg cyl  disp  hp drat
    ## 1  19.2   6 167.6 123 3.92
    ## 2  17.8   6 167.6 123 3.92
    ## 3  16.4   8 275.8 180 3.07
    ## 4  17.3   8 275.8 180 3.07
    ## 5  15.2   8 275.8 180 3.07
    ## 6  10.4   8 472.0 205 2.93
    ## 7  10.4   8 460.0 215 3.00
    ## 8  14.7   8 440.0 230 3.23
    ## 9  32.4   4  78.7  66 4.08
    ## 10 30.4   4  75.7  52 4.93
    ## 11 33.9   4  71.1  65 4.22
    union(first, second)
    ##     mpg cyl  disp  hp drat
    ## 1  33.9   4  71.1  65 4.22
    ## 2  19.2   6 167.6 123 3.92
    ## 3  30.4   4  75.7  52 4.93
    ## 4  18.1   6 225.0 105 2.76
    ## 5  19.7   6 145.0 175 3.62
    ## 6  15.5   8 318.0 150 2.76
    ## 7  26.0   4 120.3  91 4.43
    ## 8  10.4   8 460.0 215 3.00
    ## 9  14.7   8 440.0 230 3.23
    ## 10 13.3   8 350.0 245 3.73
    ## 11 21.5   4 120.1  97 3.70
    ## 12 19.2   8 400.0 175 3.08
    ## 13 15.2   8 304.0 150 3.15
    ## 14 14.3   8 360.0 245 3.21
    ## 15 32.4   4  78.7  66 4.08
    ## 16 27.3   4  79.0  66 4.08
    ## 17 17.8   6 167.6 123 3.92
    ## 18 30.4   4  95.1 113 3.77
    ## 19 24.4   4 146.7  62 3.69
    ## 20 18.7   8 360.0 175 3.15
    ## 21 21.4   6 258.0 110 3.08
    ## 22 15.2   8 275.8 180 3.07
    ## 23 17.3   8 275.8 180 3.07
    ## 24 22.8   4 140.8  95 3.92
    ## 25 21.0   6 160.0 110 3.90
    ## 26 15.8   8 351.0 264 4.22
    ## 27 16.4   8 275.8 180 3.07
    ## 28 21.4   4 121.0 109 4.11
    ## 29 15.0   8 301.0 335 3.54
    ## 30 22.8   4 108.0  93 3.85
    ## 31 10.4   8 472.0 205 2.93
    setdiff(first, second)
    ##    mpg cyl  disp  hp drat
    ## 1 21.0   6 160.0 110 3.90
    ## 2 22.8   4 108.0  93 3.85
    ## 3 21.4   6 258.0 110 3.08
    ## 4 18.7   8 360.0 175 3.15
    ## 5 18.1   6 225.0 105 2.76
    ## 6 14.3   8 360.0 245 3.21
    ## 7 24.4   4 146.7  62 3.69
    ## 8 22.8   4 140.8  95 3.92
    setdiff(second, first)
    ##     mpg cyl  disp  hp drat
    ## 1  21.5   4 120.1  97 3.70
    ## 2  15.5   8 318.0 150 2.76
    ## 3  15.2   8 304.0 150 3.15
    ## 4  13.3   8 350.0 245 3.73
    ## 5  19.2   8 400.0 175 3.08
    ## 6  27.3   4  79.0  66 4.08
    ## 7  26.0   4 120.3  91 4.43
    ## 8  30.4   4  95.1 113 3.77
    ## 9  15.8   8 351.0 264 4.22
    ## 10 19.7   6 145.0 175 3.62
    ## 11 15.0   8 301.0 335 3.54
    ## 12 21.4   4 121.0 109 4.11
    setequal(mtcars, mtcars[32:1, ])
    ## TRUE
    
  • 相关阅读:
    Coursera, Big Data 4, Machine Learning With Big Data (week 3/4/5)
    Coursera, Big Data 4, Machine Learning With Big Data (week 1/2)
    Coursera, Big Data 3, Integration and Processing (week 5)
    Linux Socket I/O
    Coursera, Big Data 3, Integration and Processing (week 4)
    概率统计知识复习
    Coursera, Big Data 3, Integration and Processing (week 1/2/3)
    Coursera, Big Data 2, Modeling and Management Systems (week 4/5/6)
    [面试] mysql 面试题
    APP完整的启动流程
  • 原文地址:https://www.cnblogs.com/li-volleyball/p/5629786.html
Copyright © 2020-2023  润新知