• Codeforces Round #410 (Div. 2)C. Mike and gcd problem


    题目连接:http://codeforces.com/contest/798/problem/C
    C. Mike and gcd problem
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike has a sequence A = [a1, a2, ..., an] of length n. He considers the sequence B = [b1, b2, ..., bn] beautiful if the gcd of all its elements is bigger than 1, i.e. .

    Mike wants to change his sequence in order to make it beautiful. In one move he can choose an index i (1 ≤ i < n), delete numbers ai, ai + 1 and put numbers ai - ai + 1, ai + ai + 1 in their place instead, in this order. He wants perform as few operations as possible. Find the minimal number of operations to make sequence A beautiful if it's possible, or tell him that it is impossible to do so.

     is the biggest non-negative number d such that d divides bi for every i (1 ≤ i ≤ n).

    Input

    The first line contains a single integer n (2 ≤ n ≤ 100 000) — length of sequence A.

    The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of sequence A.

    Output

    Output on the first line "YES" (without quotes) if it is possible to make sequence A beautiful by performing operations described above, and "NO" (without quotes) otherwise.

    If the answer was "YES", output the minimal number of moves needed to make sequence A beautiful.

    Examples
    input
    2
    1 1
    output
    YES
    1
    input
    3
    6 2 4
    output
    YES
    0
    input
    2
    1 3
    output
    YES
    1
    Note

    In the first example you can simply make one move to obtain sequence [0, 2] with .

    In the second example the gcd of the sequence is already greater than 1.

    题解:我们发现一个位置经过两次操作a[i]变成-2a[i+1],a[i+1]变成2a[i],所以当gcd为1时我们可以把他们都变为偶数,所以我们把所有的数都变为偶数

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<cstring> 
    #include<algorithm> 
    using namespace std;
    const int maxn=1e5+5; 
    int a[maxn],n; 
    int main()
    {
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]); 
        }
        int tmp=a[0]; 
        for(int i=1;i<n;i++)
        {
            tmp=__gcd(tmp,a[i]); 
        }
        if(tmp!=1)
        {
            puts("YES\n0"); 
        }
        else
        {
            int ans=0; 
            for(int i=0;i<n;i++)
            {
                if(a[i]%2==0)continue;
                else if(i==n-1)
                {
                    ans+=2; 
                } 
                else
                {
                    if(a[i+1]%2!=0)ans++;
                    else ans+=2; 
                    i++; 
                } 
            } 
            printf("YES\n%d\n",ans); 
        } 
         
    } 
  • 相关阅读:
    redis中文API
    基于redis的分布式锁
    redis安装使用配置
    windows常用命令
    curl命令详解
    linux远程连接
    memcache在大型网站的应用策略
    缓存使用的一些注意事项
    记录memcache分布式策略及算法
    U盘安装Centos7.0图解
  • 原文地址:https://www.cnblogs.com/lhclqslove/p/7423991.html
Copyright © 2020-2023  润新知