Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7619 Accepted Submission(s): 3469
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one
K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N].
The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
#include<iostream> using namespace std; #pragma warning(disable : 4996) const int MAXN = 10005; int Next[MAXN]; int text[1000005] = {0}; int pat[MAXN] = {0}; int n, m; void get_next() { int i = 0, j = -1; Next[0] = -1; while(i < m) { if(j == -1 || pat[i] == pat[j]) { i++; j++; Next[i] = j; } else { j = Next[j]; } } } int kmp() { get_next(); int i = 0, j = 0; while(i < n && j < m) { if(j == -1 || text[i] == pat[j]) { i++; j++; } else { j = Next[j]; } } if(j >= m) { return i - m + 1; } else { return -1; } } int main() { freopen("in.txt", "r", stdin); int t; scanf("%d", &t); while (t--) { scanf("%d %d", &n, &m); for(int i = 0; i < n; i++) { scanf("%d", &text[i]); } for(int i = 0; i < m; i++) { scanf("%d", &pat[i]); } printf("%d\n", kmp()); } return 0; }