• HDOJ_1874畅通工程续 && hdoj_2544最短路


    畅通工程续

    Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 17962    Accepted Submission(s): 6193


    Problem Description
    某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

    现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
     

    Input
    本题目包含多组数据,请处理到文件结束。
    每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
    接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
    再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
     

    Output
    对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
     

    Sample Input
    3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
     

    Sample Output
    2 -1

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    #pragma warning(disable : 4996)
    const int MAXN = 205;
    const int INF = 999999;
    int n;
    int maps[MAXN][MAXN];
    bool visited[MAXN];
    int pre[MAXN];
    int dist[MAXN];
    
    void init()
    {
    	memset(visited, false, sizeof(visited));
    	for (int i = 1; i <= n; i++)
    	{
    		for (int j = 1; j <= n; j++)
    		{
    			maps[i][j] = INF;
    		}
    		pre[i] = i;
    		dist[i] = INF;
    	}
    }
    
    void Dijkstra(int s, int e)
    {
    	int i, j;
    	int minValue, minNode;
    
    	dist[s] = 0;
    	visited[s] = true;
    	for (i = 1; i <= n; i++)
    	{
    		if (!visited[i] && maps[s][i] != INF)
    		{
    			dist[i] = maps[s][i];
    			pre[i] = s;
    		}
    	}
    	for (i = 1; i <= n; i++)
    	{
    		minValue = INF;
    		minNode = 0;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && minValue > dist[j])
    			{
    				minNode = j;
    				minValue = dist[j];
    			}
    		}
    		if(minNode == 0)
    		{
    			break;
    		}
    		visited[minNode] = true;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && maps[minNode][j] != INF && dist[j] > dist[minNode] + maps[minNode][j])
    			{
    				dist[j] = dist[minNode] + maps[minNode][j];
    				pre[j] = minNode;
    			}
    		}
    		if(minNode == e)
    		{
    			break;
    		}
    	}
    }
    
    int main()
    {
    	freopen("in.txt", "r", stdin);
    	int m, s, e, a, b, x;
    	while (scanf("%d %d", &n, &m) != EOF)
    	{
    		init();
    		while (m--)
    		{
    			scanf("%d %d %d", &a, &b, &x);
    			a++;
    			b++;
    			if(x < maps[a][b])
    			{
    				maps[a][b] = x;
    				maps[b][a] = x;
    			}
    		}
    		scanf("%d %d", &s, &e);
    		s++;
    		e++;
    		Dijkstra(s, e);
    		if(dist[e] == INF)
    		{
    			printf("-1\n");
    		}
    		else
    		{
    			printf("%d\n", dist[e]);
    		}
    	}
    	return 0;
    }

    最短路

    Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 19671    Accepted Submission(s): 8411


    Problem Description
    在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

     

    Input
    输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
    输入保证至少存在1条商店到赛场的路线。
     

    Output
    对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
     

    Sample Input
    2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
     

    Sample Output
    3 2
     

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #pragma warning(disable : 4996)
    const int MAXN = 105;
    const int INF = 999999;
    int n;
    int map[MAXN][MAXN];
    bool visited[MAXN];
    int pre[MAXN];
    int dist[MAXN];
    
    void init()
    {
    	memset(visited, false, sizeof(visited));
    	for (int i = 1; i <= n; i++)
    	{
    		pre[i] = i;
    		dist[i] = INF;
    		for (int j = 1; j <= n; j++)
    		{
    			map[i][j] = INF;
    		}
    	}
    }
    
    void Dijkstra(int v)
    {
    	int i, j;
    	int minValue, minNode;
    
    	dist[1] = 0;
    	visited[1] = true;
    	for (i = 2; i <= n; i++)
    	{
    		if (map[1][i] != INF)
    		{
    			dist[i] = map[1][i];
    			pre[i] = 1;
    		}
    	}
    	for (i = 2; i <= n; i++)
    	{
    		minValue = INF;
    		minNode = 0;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && minValue > dist[j])
    			{
    				minNode = j;
    				minValue = dist[j];
    			}
    		}
    		if(minNode == 0)
    		{
    			break;
    		}
    		visited[minNode] = true;
    		for (j = 1; j <= n; j++)
    		{
    			if(!visited[j] && map[minNode][j] != INF && dist[j] > dist[minNode] + map[minNode][j])
    			{
    				dist[j] = dist[minNode] + map[minNode][j];
    				pre[j] = minNode;
    			}
    		}
    		if(minNode == v)
    		{
    			break;
    		}
    	}
    }
    
    int main()
    {
    	freopen("in.txt", "r", stdin);
    	int m, a, b, c;
    	while (cin >> n >> m)
    	{
    		if(n == 0 && m == 0)
    		{
    			break;
    		}
    		init();
    		while (m--)
    		{
    			cin >> a >> b >> c;
    			if(map[a][b] > c)
    			{
    				map[a][b] = c;
    				map[b][a] = c;
    			}
    		}
    		Dijkstra(n);
    		cout << dist[n] << endl;
    	}
    	return 0;
    }


  • 相关阅读:
    地铁图快速寻路算法
    手工下载器
    在Windows7下玩老游戏花屏的解决办法
    使用代码生成建立可扩展序列化器(上)
    用Java写成的Tiger到JVM编译器
    魔王的反击
    爬取排行榜123网站之2019年上海企业前20强
    微博热搜排行榜前十
    [翻译]Everything you know about CSS is wrong!
    YSlow 1/13 Minimize HTTP Requests
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/5835061.html
Copyright © 2020-2023  润新知