静态:
#include <iostream> #include <cstring> #include <cstdio> #include <queue> using namespace std; #pragma warning(disable : 4996) const int MAXN = 1005; typedef struct Node { int v; int next; }Node; Node edge[MAXN]; int first[MAXN]; int n, m; //n点数 m边数 void init() { int x, y; memset(first, -1, sizeof(first)); for (int i = 1; i <= m; i++) { cin >> x >> y; edge[i].next = first[x]; edge[i].v = y; first[x] = i; } } void print() { for (int i = 1; i <= n; i++) { printf("%d", i); for (int j = first[i]; j != -1; j = edge[j].next) { printf("->%d", edge[j].v); } printf("\n"); } } int main() { while (scanf("%d %d", &n, &m) != EOF) { init(); print(); } return 0; }
对于重边选取value小的值:
#include <iostream> #include <cstring> #include <cstdio> #include <queue> #include <algorithm> using namespace std; #pragma warning(disable : 4996) const int MAXN = 1005; typedef struct Node { int v;//终点位置 int value;//权值 int next;//同一起点下在edge数组中的位置 }Node; Node edge[MAXN];//邻接表 int first[MAXN];//以该点为起点的第一条边在edge数组中的位置 int n, m; //n点数 m边数 void init() { int x, y, value, index; bool flag; memset(first, -1, sizeof(first)); index = 1; for (int i = 1; i <= m; i++) { scanf("%d %d %d", &x, &y, &value); flag = false; for (int j = first[x]; j != -1; j = edge[j].next) { if(y == edge[j].v) { if(value < edge[j].value) { edge[j].value = value; } flag = true; break; } } if(flag) { continue; } edge[index].v = y; edge[index].value = value; edge[index].next = first[x]; first[x] = index++; swap(x, y); edge[index].v = y; edge[index].value = value; edge[index].next = first[x]; first[x] = index++; } } void print() { for (int i = 1; i <= n; i++) { printf("%d", i); for (int j = first[i]; j != -1; j = edge[j].next) { printf("->%d", edge[j].v); } printf("\n"); } } int main() { while (scanf("%d %d", &n, &m) != EOF) { if(n == 0 && m == 0) { break; } init(); print(); } return 0; }
可见邻接表与邻接矩阵相比,还是麻烦不少,但在稀疏图,邻接表的威力就显现出来了,毕竟只储存非零节点。
最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 19979 Accepted Submission(s): 8541
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
#include <iostream> #include <cstring> #include <cstdio> #include <queue> #include <algorithm> using namespace std; #pragma warning(disable : 4996) const int MAXN = 105; const int INF = 999999; typedef struct Node { int v;//终点位置 int value;//权值 int next;//同一起点下在edge数组中的位置 }Node; Node edge[10005];//邻接表 int first[MAXN];//以该点为起点的第一条边在edge数组中的位置 int n, m; //n点数 m边数 bool visited[MAXN]; int dist[MAXN]; queue<int>Q; void init() { int x, y, value, index; bool flag; memset(first, -1, sizeof(first)); index = 1; for (int i = 1; i <= m; i++) { scanf("%d %d %d", &x, &y, &value); flag = false; for (int j = first[x]; j != -1; j = edge[j].next) { if(y == edge[j].v) { if(value < edge[j].value) { edge[j].value = value; } flag = true; break; } } if(flag) { continue; } edge[index].v = y; edge[index].value = value; edge[index].next = first[x]; first[x] = index++; swap(x, y); edge[index].v = y; edge[index].value = value; edge[index].next = first[x]; first[x] = index++; } } void SPFA(int Start) { while (!Q.empty()) { Q.pop(); } memset(visited, false, sizeof(visited)); for (int i = 1; i <= n; i++) { dist[i] = INF; } dist[Start] = 0; visited[Start] = true; Q.push(Start); while (!Q.empty()) { int top = Q.front(); Q.pop(); visited[top] = false; for (int i = first[top]; i != -1 ; i = edge[i].next) { int e = edge[i].v; if(dist[e] > edge[i].value + dist[top]) { dist[e] = edge[i].value + dist[top]; if(!visited[e]) { Q.push(e); visited[e] = true; } } } } } int main() { freopen("in.txt", "r", stdin); while (scanf("%d %d", &n, &m) != EOF) { if(n == 0 && m == 0) { break; } init(); SPFA(1); printf("%d\n", dist[n]); } return 0; }