Intervals
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 18873 | Accepted: 7097 |
Description
You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Write a program that:
reads the number of intervals, their end points and integers c1, ..., cn from the standard input,
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n,
writes the answer to the standard output.
Input
The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <=
ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.
Output
The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.
Sample Input
5 3 7 3 8 10 3 6 8 1 1 3 1 10 11 1
Sample Output
6给出n个端点为整数的闭区间[ai,bi] 及相应的正整数ci,求出满足下述条件的序列的最短长度:序列中的元素至少有ci个在第i个区间[ai,bi]中。
输入格式
第一行n(1 ≤n ≤50000);
接下来n行ai,bi,ci(0 ≤ai≤bi≤50000,1 ≤ci≤bi-ai+1)
输出格式
一行L,表示序列的最短长度。
设si=序列中在区间[0,i]的元素个数,则在区间[ai,bi]中的元素个数为sbi-sai-1。
因此第i个约束条件可以用下面的不等式描述:sbi-sai-1≥ci
问题转化为:
求一个满足上述条件的序列s,使sB(B=max{bi})最小。
#include<iostream> #include<cstdio> #include<cstring> #include<map> #include<cmath> #include<vector> #include<algorithm> #include<set> #include<string> #include<queue> #include <stack> using namespace std; #pragma warning(disable : 4996) const int MAXN = 51000; const int INF = 999999; typedef struct Node { int v;//终点位置 int value;//权值 int next;//同一起点下在edge数组中的位置 }Node; Node edge[MAXN * 4];//邻接表 int first[MAXN];//以该点为起点的第一条边在edge数组中的位置 int n; //n点数 bool visited[MAXN]; int dist[MAXN]; queue<int>Q; int MIN, MAX; void init() { int x, y, value, index; memset(first, -1, sizeof(first)); index = 1; MIN = INF; MAX = -INF; for (int i = 1; i <= n; i++) { scanf("%d %d %d", &x, &y, &value); x--; if(x < MIN) { MIN = x; } if(y > MAX) { MAX = y; } edge[index].v = y; edge[index].value = value; edge[index].next = first[x]; first[x] = index++; } //cout << MIN << " " << MAX << endl; for (int i = MIN; i < MAX; i++) { edge[index].v = i + 1; edge[index].value = 0; edge[index].next = first[i]; first[i] = index++; edge[index].v = i; edge[index].value = -1; edge[index].next = first[i + 1]; first[i + 1] = index++; } } void SPFA(int Start) { while (!Q.empty()) { Q.pop(); } for (int i = 0; i <= MAX; i++) { visited[i] = false; dist[i] = -INF; } dist[Start] = 0; visited[Start] = true; Q.push(Start); while (!Q.empty()) { int top = Q.front(); Q.pop(); visited[top] = false; for (int i = first[top]; i != -1 ; i = edge[i].next) { int e = edge[i].v; if(dist[e] < edge[i].value + dist[top]) { dist[e] = edge[i].value + dist[top]; if(!visited[e]) { Q.push(e); visited[e] = true; } } } } } int main() { freopen("in.txt", "r", stdin); while (scanf("%d", &n) != EOF) { init(); SPFA(MIN); printf("%d\n", dist[MAX]); //print(); } return 0; }
可以刷的题
POJ 1716
POJ 3159
POJ 1364
POJ 3169
POJ 1275
POJ 2983