• Leetcode 数据流中的中位数:双堆


    先看一道经典题,用两个堆维护中位数

    LC 295. 数据流的中位数

    题目:元素逐渐增加,求当前数剧的中位数
    方法:用一个大根堆维护左边,用一个小根堆维护右边,插入元素时保持两者差不超过1。查找时只需要考虑两个顶点。
    其实一种直观的思路是维护有序列表,保持插入和查找都是logn,比如跳表,但是很难写啊

    class MedianFinder {
    public:
        /** initialize your data structure here. */
        priority_queue<int>leftQ;  // 左边是大根堆
        priority_queue<int, vector<int>, greater<int>>rightQ;
        MedianFinder() {
    
        }
        
        void addNum(int num) {
            if(leftQ.empty() || num <= leftQ.top()) {
                leftQ.push(num);
                if(leftQ.size() - rightQ.size() > 1) {
                    int tmp = leftQ.top();leftQ.pop();
                    rightQ.push(tmp);
                }
            } else {
                rightQ.push(num);
                if(rightQ.size() - leftQ.size() > 1) {
                    int tmp = rightQ.top();rightQ.pop();
                    leftQ.push(tmp);
                }
            }
        }
        
        double findMedian() {
            if(leftQ.size() > rightQ.size())  return leftQ.top();
            else if(leftQ.size() == rightQ.size())  return (leftQ.top() + rightQ.top()) *1.0 / 2;
            else  return rightQ.top();
        }
    };
    
    /**
     * Your MedianFinder object will be instantiated and called as such:
     * MedianFinder* obj = new MedianFinder();
     * obj->addNum(num);
     * double param_2 = obj->findMedian();
     */
    

    一道进阶版的,除了添加还是删除操作

    LC 480. 滑动窗口中位数

    题目:求长度为k的窗口的中位数

    方法一:双堆+延迟删除

    插入是一样的,更新堆和个数,删除只做记录和更新个数,不更新堆。不管插入和删除都需要调整平衡。

    class Solution {
    public:
        priority_queue<int>leftQ;
        priority_queue<int, vector<int>, greater<int>>rightQ;
        unordered_map<int, int>mp;
        int leftCnt, rightCnt;
        void adjust() {
            if(leftCnt - rightCnt > 1) {
                int tmp = leftQ.top();leftQ.pop();leftCnt--;
                rightQ.push(tmp);rightCnt++;
            }
            if(rightCnt- leftCnt > 1) {
                int tmp = rightQ.top();rightQ.pop();rightCnt--;
                leftQ.push(tmp);leftCnt++;
            }
        }
        void addItem(int num) {
            if(leftQ.empty() && (!rightQ.empty())) {  // k=1的时候,会出现左边为空,而右边有元素的情况
                int tmp = rightQ.top();rightQ.pop();rightCnt--;
                leftQ.push(tmp);leftCnt++;
            }
            if(leftQ.empty() || num < leftQ.top()) {
                leftQ.push(num);leftCnt++;
            } else { 
                rightQ.push(num);rightCnt++;
            }
            adjust();
        }
        void deleteItem(int num) {
            mp[num]++;   // 记录删除了的
            if(num <= leftQ.top())  leftCnt--; // 要用小于等于,因为可能要删除的就是队首
            else  rightCnt--;
            adjust();
        }
        void pure() {
            while((!leftQ.empty()) && mp[leftQ.top()]) {
                mp[leftQ.top()]--;
                leftQ.pop();
            }
            while((!rightQ.empty()) && mp[rightQ.top()]) {
                mp[rightQ.top()]--;
                rightQ.pop(); 
            }
        }
        double getMedian() {
            pure();  // 清理堆头    
            if(leftCnt > rightCnt)  return leftQ.top();
            else if(leftCnt < rightCnt)  return rightQ.top();
            return ((long long)leftQ.top() + (long long)rightQ.top()) * 1.0 / 2;
        }
    
        vector<double> medianSlidingWindow(vector<int>& nums, int k) {   
            int i = 0, j = 0;
            while(j < k) {
                addItem(nums[j]);
                j++;
            }
            vector<double>ans;
            ans.push_back(getMedian());
    
            while(j < nums.size()) {
                addItem(nums[j++]);
                deleteItem(nums[i++]);
                ans.push_back(getMedian());
            }
            return ans;
        }
    };
    

    方法二:pbds tree

    前面将了,我们可以用跳表做,其实只要能有序列表logn查找第k个的数据结构都行,pbds库就提供了很多tree,都是平衡树。但是有一个问题,他们都不支持重复元素,在这里我们采用pair类型就可以了。

    #include <ext/pb_ds/tree_policy.hpp>
    #include <ext/pb_ds/assoc_container.hpp>
    using namespace __gnu_pbds;
    
    // alias template
    template <typename T>
    using orderd_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
    
    class Solution {
    public:
        tree<pair<int,int>, null_type, less<pair<int, int>>, rb_tree_tag, tree_order_statistics_node_update> order_set;
        vector<double> medianSlidingWindow(vector<int>& nums, int k) {
            vector<double>ans;
            orderd_set<pair<int, int>>myset;
            for(int i = 0;i < nums.size();i++) {
                if(i < k)  myset.insert({nums[i], i});
                else {
                    if(k&1)  ans.push_back((*myset.find_by_order(k/2)).first);
                    else ans.push_back(((long long)(*myset.find_by_order(k/2)).first + (long long)(*myset.find_by_order(k/2-1)).first)*1.0/2);
                    myset.insert({nums[i], i});
                    myset.erase({nums[i-k], i-k});
                }
            }
            if(k&1)  ans.push_back((*myset.find_by_order(k/2)).first);
            else ans.push_back(((long long)(*myset.find_by_order(k/2)).first + (long long)(*myset.find_by_order(k/2-1)).first)*1.0/2);
            return ans;
        }
    };
    

    方法三:multiset+advance

    multiset支持重复元素,advance支持查找第K个

    class Solution {
    public:
        vector<double> medianSlidingWindow(vector<int>& nums, int k) {
            vector<double>ans;
            multiset<double>myset;
            for(int i = 0;i < nums.size();i++) {
                if(i < k)  myset.insert(nums[i]);
                else {
                    auto p = myset.begin();
                    advance(p, k/2);
                    if(k&1)  ans.push_back(*p);
                    else ans.push_back(((long long)*p+ (long long)(*prev(p, 1)))*1.0/2);
                    myset.insert(nums[i]);
                    myset.erase(myset.find(nums[i-k]));
                }
            }
            auto p = myset.begin();
            advance(p, k/2);
            if(k&1)  ans.push_back(*p);  // 最后还有一次
            else ans.push_back(((long long)*p+ (long long)(*prev(p, 1)))*1.0/2);
            return ans;
        }
    };
    

    参考链接

    1. 《风 险 对 冲》:双堆对顶,大堆小堆同时维护,44ms
    2. C++福利!仅23行代码!!!O(nlogk) 我觉得我的题解能冲到前三吧!!!
    3. 【微扰理论】直接基于红黑树解决
    4. ACM_template/常用技巧/pbds库用法.md
  • 相关阅读:
    git分布式版本控制(六)
    git分布式版本控制(五)
    git分布式版本控制(四)
    git分布式版本控制(三)
    git分布式版本控制(二)
    git分布式版本控制(一)
    svn版本控制(十)
    svn版本控制(九)
    svn版本控制(八)
    svn版本控制(七)
  • 原文地址:https://www.cnblogs.com/lfri/p/15798749.html
Copyright © 2020-2023  润新知