题意
有一堆石子,两个顶尖聪明的人玩游戏,先取者可以取走任意多个,但不能全取完,以后每人取的石子数不能超过上个人的两倍。石子的个数是通过模方程组给出的。
分析
斐波那契博弈有结论:当且仅当石子数为斐波那契数时,先手必败。
又因为 $n leq 10^{15}$,在这个范围内的斐波那契数只有72个,可以预处理出来。
注意会爆long long !!
#include<iostream> #include<cstdio> #define LL __int128 using namespace std; const LL MAXN = 15; LL fibo[80] = {1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269,2178309,3524578,5702887,9227465,14930352,24157817,39088169,63245986,102334155,165580141,267914296,433494437,701408733,1134903170,1836311903,2971215073,4807526976,7778742049,12586269025,20365011074,32951280099,53316291173,86267571272,139583862445,225851433717,365435296162,591286729879,956722026041,1548008755920,2504730781961,4052739537881,6557470319842,10610209857723,17167680177565,27777890035288,44945570212853,72723460248141,117669030460994,190392490709135,308061521170129,498454011879264,806515533049393}; int K; LL C[MAXN], M[MAXN], x, y; LL gcd(LL a, LL b) { return b == 0 ? a : gcd(b, a % b); } LL exgcd(LL a, LL b, LL &x, LL &y) { if (b == 0) {x = 1, y = 0; return a;} LL r = exgcd(b, a % b, x, y), tmp; tmp = x; x = y; y = tmp - (a / b) * y; return r; } LL inv(LL a, LL b) { LL r = exgcd(a, b, x, y); while (x < 0) x += b; return x; } int main() { scanf("%d", &K); for (int i = 1; i <= K; i++) //x = C[i](mod M[i]) { long long _m, _c; scanf("%lld%lld", &_m, &_c); M[i] = _m, C[i] = _c; } bool flag = 1; for (LL i = 2; i <= K; i++) { LL M1 = M[i - 1], M2 = M[i], C2 = C[i], C1 = C[i - 1], T = gcd(M1, M2); if ((C2 - C1) % T != 0) {flag = 0; break;} M[i] = (M1 * M2) / T; //可能爆long long C[i] = ( inv( M1 / T , M2 / T ) * (C2 - C1) / T ) % (M2 / T) * M1 + C1; C[i] = (C[i] % M[i] + M[i]) % M[i]; } //printf("%lld ", flag ? C[K] : -1); if(flag == 0) printf("Tankernb! "); else { bool flg = false; for(int i = 0;i < 80;i++) if(fibo[i] == C[K]) { flg = true; break; } if(flg) printf("Lbnb! "); else printf("Zgxnb! "); } return 0; }