• spark 2.0.0集群安装与hive on spark配置


    1. 环境准备:

    JDK1.8

    hive 2.3.4

    hadoop 2.7.3

    hbase 1.3.3

    scala 2.11.12

    mysql5.7

    2. 下载spark2.0.0

    cd /home/worksapce/software
    wget https://archive.apache.org/dist/spark/spark-2.0.0/spark-2.0.0-bin-hadoop2.7.tgz
    tar -xzvf spark-2.0.0-bin-hadoop2.7.tgz
    mv spark-2.0.0-bin-hadoop2.7 spark-2.0.0

    3. 配置系统环境变量

    vim /etc/profile

    末尾添加

    #spark
    export SPARK_HOME=/home/workspace/software/spark-2.0.0
    export PATH=:$PATH:$SPARK_HOME/bin

    4. 配置spark-env.sh

    cd /home/workspace/software/spark-2.0.0/conf
    cp spark-env.sh.template spark-env.sh
    vim spark-env.sh

    末尾添加:

    export JAVA_HOME=/usr/java/jdk1.8.0_172-amd64
    export SCALA_HOME=/home/workspace/software/scala-2.11.12
    export HADOOP_HOME=/home/workspace/hadoop-2.7.3
    export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
    
    export SPARK_HOME=/home/workspace/software/spark-2.0.0
    export SPARK_DIST_CLASSPATH=$(/home/workspace/hadoop-2.7.3/bin/hadoop classpath)
    export SPARK_LIBRARY_PATH=$SPARK_HOME/lib
    export SPARK_LAUNCH_WITH_SCALA=0
    
    export SPARK_WORKER_DIR=$SPARK_HOME/work
    export SPARK_LOG_DIR=$SPARK_HOME/logs
    export SPARK_PID_DIR=$SPARK_HOME/run 
    
    export SPARK_MASTER_IP=192.168.1.101
    export SPARK_MASTER_HOST=192.168.1.101
    export SPARK_MASTER_WEBUI_PORT=18080
    export SPARK_MASTER_PORT=7077
    
    export SPARK_LOCAL_IP=192.168.1.101
    
    export SPARK_WORKER_CORES=4
    export SPARK_WORKER_PORT=7078
    
    export SPARK_WORKER_MEMORY=4g
    export SPARK_DRIVER_MEMORY=4g
    export SPARK_EXECUTOR_MEMORY=4g 

    5. 配置spark-defaults.conf

    cd /home/workspace/software/spark-2.0.0/conf
    cp spark-defaults.conf.template spark-defaults.conf
    vim spark-defaults.conf

    末尾添加

    spark.master                     spark://192.168.1.101:7077
    spark.eventLog.enabled           true
    spark.eventLog.dir               hdfs://192.168.1.101:9000/spark-log
    spark.serializer                 org.apache.spark.serializer.KryoSerializer
    spark.executor.memory            4g
    spark.driver.memory              4g
    spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"

    6. 配置slaves

    cd /home/workspace/software/spark-2.0.0/conf
    cp slaves.template slaves
    vim slaves

    末尾添加

    192.168.1.101
    192.168.1.102
    192.168.1.103

    7. 创建相关目录(在spark-env.sh中定义)

    hdfs dfs  -mkdir  -p   /spark-log
    hdfs dfs  -chmod  777  /spark-log
    mkdir -p  $SPARK_HOME/work  $SPARK_HOME/logs  $SPARK_HOME/run
    mkdir -p $HIVE_HOME/logs

    8.修改hive-site.xml

    vim $HIVE_HOME/conf/hive-site.xml

    把文件内容修改为

    <?xml version="1.0" encoding="UTF-8" standalone="no"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <configuration>
        <property>
            <name>hive.metastore.schema.verification</name>
            <value>false</value>
        </property>
        <property>
            <name>hive.metastore.warehouse.dir</name>
            <value>/hive/warehouse</value>
            <description>location of default database for the warehouse</description>
        </property>
        <property>
            <name>hive.exec.scratchdir</name>
            <value>/hive/tmp</value>
            <description>Scratch space for Hive jobs</description>
        </property>
        <property>
            <name>hive.querylog.location</name>
            <value>/hive/log</value>
        </property>
        <property>
            <name>hive.metastore.uris</name>
            <value>thrift://192.168.1.103:9083</value>
        </property>
        <!--hive server2 settings-->
        <property>
            <name>hive.server2.thrift.bind.host</name>
            <value>192.168.1.103</value>
        </property>
        <property>
            <name>hive.server2.thrift.port</name>
            <value>10000</value>
        </property>
        <property>
            <name>hive.server2.webui.host</name>
            <value>192.168.1.103</value>
        </property>
        <property>
            <name>hive.server2.webui.host.port</name>
            <value>10002</value>
        </property>
        <property>
            <name>hive.server2.long.polling.timeout</name>
            <value>5000</value>
        </property>
        <property>
            <name>hive.server2.enable.doAs</name>
            <value>true</value>
        </property>
        <!--metadata database connection string settings-->
        <property>
            <name>javax.jdo.option.ConnectionURL</name>
            <value>jdbc:mysql://192.168.1.103:3308/hive?createDatabaseIfNotExist=true</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionDriverName</name>
            <value>com.mysql.jdbc.Driver</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionUserName</name>
            <value>hive</value>
        </property>
        <property>
            <name>javax.jdo.option.ConnectionPassword</name>
            <value>hive</value>
        </property>
        <property>
            <name>datanucleus.autoCreateSchema </name>
            <value>false</value>
            <description>creates necessary schema on a startup if one doesn't exist. set this to false, after creating it once</description>
        </property>
        <property>
            <name>datanucleus.fixedDatastore</name>
            <value>true</value>
        </property>
           <!-- hive on mr-->
        <!-- 
        <property>
            <name>mapred.job.tracker</name>
            <value>http://192.168.1.101:9001</value>
        </property>
        <property>
            <name>mapreduce.framework.name</name>
            <value>yarn</value>
        </property> 
        -->
        <!--hive on spark or spark on yarn -->
        <property>
            <name>hive.execution.engine</name>
            <value>spark</value>
        </property>
        <property>
            <name>spark.home</name>
            <value>/home/workspace/software/spark-2.0.0</value>
        </property>
        <property>
            <name>spark.master</name>
            <value>spark://192.168.1.101:7077</value>
            <!-- 或者yarn-cluster/yarn-client -->
        </property>
        <property>
            <name>spark.submit.deployMode</name>
            <value>client</value>
        </property>
        <property>
            <name>spark.eventLog.enabled</name>
            <value>true</value>
        </property>
        <property>
            <name>spark.eventLog.dir</name>
            <value>hdfs://192.168.1.101:9000/spark-log</value>
        </property>
        <property>
            <name>spark.serializer</name>
            <value>org.apache.spark.serializer.KryoSerializer</value>
        </property>
        <property>
            <name>spark.executor.memeory</name>
            <value>4g</value>
        </property>
        <property>
            <name>spark.driver.memeory</name>
            <value>4g</value>
        </property>
        <property>
            <name>spark.executor.extraJavaOptions</name>
            <value>-XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"</value>
        </property>
        <!--concurrency support-->
        <property>
            <name>hive.support.concurrency</name>
            <value>true</value>
            <description>Whether hive supports concurrency or not. A zookeeper instance must be up and running for the default hive lock manager to support read-write locks.</description>
        </property>
        <property>
            <name>hive.exec.dynamic.partition.mode</name>
            <value>nonstrict</value>
        </property>
            <!--transaction support-->
        <property>
            <name>hive.txn.manager</name>
            <value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
        </property>
        <property>
            <name>hive.compactor.initiator.on</name>
            <value>true</value>
        </property>
        <property>
            <name>hive.compactor.worker.threads</name>
            <value>1</value>
        </property>
        <property>
            <name>hive.stats.autogather</name>
            <value>true</value>
            <description>A flag to gather statistics automatically during the INSERT OVERWRITE command.</description>
        </property>
        <!--hive web interface settings, I think this is useless,so comment it-->
        <!-- 
        <property>
            <name>hive.hwi.listen.host</name>
            <value>192.168.1.131</value>
        </property>
        <property>
            <name>hive.hwi.listen.port</name>
            <value>9999</value>
        </property>
        <property>
            <name>hive.hwi.war.file</name>
            <value>lib/hive-hwi-2.1.1.war</value>
        </property>  
        -->
    </configuration>

    9. 拷贝hive-site.xml到spark/conf下

    cp $HIVE_HOME/conf/hive-site.xml $SPARK_HOME/conf

    10 分发到192.168.1.102,192.168.1.103

     cd /home/workspace/software/
     scp -r spark-2.0.0  192.168.1.102:/home/workspace/software
     scp -r spark-2.0.0  192.168.1.103:/home/workspace/software

    修改102,103上的SPARK_LOCAL_IP值

    vim /home/workspace/software/spark-2.0.0/conf/spark-env.sh

    将SPARK_LOCAL_IP分别改为192.168.1.102,192.168.1.103

    11 将mysql jar包复制到$SPARK_HOME/lib目录下(每台机器都要做)

    cp $HIVE_HOME/lib/mysql-connector-java-5.1.47.jar $SPARK_HOME/lib

    注:本例中之前已经安装好hive,如果没有,请到mysql官网网站下载对应的jdbc jar包

    12. 启动spark集群

    在spark master节点上(本例为192.168.1.101)执行下面语句

    $SPARK_HOME/sbin/start-all.sh

    192.168.1.101

    192.168.1.102:

    192.168.1.103:

     浏览器打开http:192.168.1.101:18080

    13.测试使用

    [druid@palo101 apache-maven-3.6.0]$ hive
    /tmp/druid
    Logging initialized using configuration in file:/home/workspace/software/apache-hive-2.3.4/conf/hive-log4j2.properties Async: true
    hive> use kylin_flat_db;
    OK
    Time taken: 1.794 seconds
    hive> desc kylin_sales;
    OK
    trans_id                bigint                                      
    part_dt                 date                    Order Date          
    lstg_format_name        string                  Order Transaction Type
    leaf_categ_id           bigint                  Category ID         
    lstg_site_id            int                     Site ID             
    slr_segment_cd          smallint                                    
    price                   decimal(19,4)           Order Price         
    item_count              bigint                  Number of Purchased Goods
    seller_id               bigint                  Seller ID           
    buyer_id                bigint                  Buyer ID            
    ops_user_id             string                  System User ID      
    ops_region              string                  System User Region  
    Time taken: 0.579 seconds, Fetched: 12 row(s)
    hive> select trans_id, sum(price) as total, count(seller_id) as cnt from kylin_sales group by trans_id order by cnt desc limit 10;
    Query ID = druid_20190209000716_9676460c-1a76-456d-9bd6-b6f557d5e02c
    Total jobs = 1
    Launching Job 1 out of 1
    In order to change the average load for a reducer (in bytes):
      set hive.exec.reducers.bytes.per.reducer=<number>
    In order to limit the maximum number of reducers:
      set hive.exec.reducers.max=<number>
    In order to set a constant number of reducers:
      set mapreduce.job.reduces=<number>
    Starting Spark Job = 72720bf1-750d-4f6f-bf9c-5cffa0e4c73b
    
    Query Hive on Spark job[0] stages: [0, 1, 2]
    
    Status: Running (Hive on Spark job[0])
    --------------------------------------------------------------------------------------
              STAGES   ATTEMPT        STATUS  TOTAL  COMPLETED  RUNNING  PENDING  FAILED  
    --------------------------------------------------------------------------------------
    Stage-0 ........         0      FINISHED      1          1        0        0       0  
    Stage-1 ........         0      FINISHED      1          1        0        0       0  
    Stage-2 ........         0      FINISHED      1          1        0        0       0  
    --------------------------------------------------------------------------------------
    STAGES: 03/03    [==========================>>] 100%  ELAPSED TIME: 10.12 s    
    --------------------------------------------------------------------------------------
    Status: Finished successfully in 10.12 seconds
    OK
    8621    33.4547 1
    384     15.4188 1
    7608    88.6492 1
    9166    40.4308 1
    9215    63.5407 1
    4551    59.2537 1
    7041    79.8884 1
    522     18.3204 1
    5618    78.6241 1
    9831    5.8088  1
    Time taken: 21.788 seconds, Fetched: 10 row(s)
    hive> 

    13 FAQ:

    13.1  如果在使用过程中遇到类似下面的错误

    Exception in thread "main" java.lang.NoSuchFieldError: SPARK_RPC_SERVER_ADDRESS

    通过查看hive的日志文件(在/tmp/{user}/hive.log),这是因为默认使用的spark安装包是继承了hive的包,名字为spark-xxx-bin-hadoopxx.xx.tgz都是继承了hive的包,在hive on spark模式下,会出现冲突,解决办法有两个:
    1) 手动编译spark不包含hive的包,具体请参见本人的博文Spark2.0.0源码编译,编译指令为:

    ./make-distribution.sh  --name "hadoop2.7.3-without-hive"   --tgz  -Dhadoop.version=2.7.3    -Dscala-2.11    -Phadoop-2.7  -Pyarn      -DskipTests clean package

    用编译出来的包来安装。

    2) 删除预编译包中hive的jar包,具体操作为:

    cd $SPARK_HOME/jars
    rm -f hive-*
    rm -rf spark-hive_*
    #删除下面6个文件
    #    hive-beeline-1.2.1.spark2.jar
    #    hive-cli-1.2.1.spark2.jar
    #    hive-exec-1.2.1.spark2.jar
    #    hive-jdbc-1.2.1.spark2.jar
    #    hive-metastore-1.2.1.spark2.jar
    #    spark-hive_2.11-2.0.0.jar
    #    spark-hive-thriftserver_2.11-2.0.0.jar

    注意:每台机器都要做.

    13.2 如果出现类似下面的错误

    Exception in thread "main" java.lang.NoClassDefFoundError: scala/collection/Iterable
            at org.apache.hadoop.hive.ql.optimizer.spark.SetSparkReducerParallelism.getSparkMemoryAndCores(SetSparkReducerParallelism.java:236)
            at org.apache.hadoop.hive.ql.optimizer.spark.SetSparkReducerParallelism.process(SetSparkReducerParallelism.java:173)
            at org.apache.hadoop.hive.ql.lib.DefaultRuleDispatcher.dispatch(DefaultRuleDispatcher.java:90)
            at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.dispatchAndReturn(DefaultGraphWalker.java:105)
            at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.dispatch(DefaultGraphWalker.java:89)
            at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:56)
            at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:61)
            at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:61)
            at org.apache.hadoop.hive.ql.lib.PreOrderWalker.walk(PreOrderWalker.java:61)
            at org.apache.hadoop.hive.ql.lib.DefaultGraphWalker.startWalking(DefaultGraphWalker.java:120)
            at org.apache.hadoop.hive.ql.parse.spark.SparkCompiler.runSetReducerParallelism(SparkCompiler.java:288)
            at org.apache.hadoop.hive.ql.parse.spark.SparkCompiler.optimizeOperatorPlan(SparkCompiler.java:122)
            at org.apache.hadoop.hive.ql.parse.TaskCompiler.compile(TaskCompiler.java:140)
            at org.apache.hadoop.hive.ql.parse.SemanticAnalyzer.analyzeInternal(SemanticAnalyzer.java:11273)
            at org.apache.hadoop.hive.ql.parse.CalcitePlanner.analyzeInternal(CalcitePlanner.java:286)
            at org.apache.hadoop.hive.ql.parse.BaseSemanticAnalyzer.analyze(BaseSemanticAnalyzer.java:258)
            at org.apache.hadoop.hive.ql.Driver.compile(Driver.java:512)
            at org.apache.hadoop.hive.ql.Driver.compileInternal(Driver.java:1317)
            at org.apache.hadoop.hive.ql.Driver.runInternal(Driver.java:1457)
            at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1237)
            at org.apache.hadoop.hive.ql.Driver.run(Driver.java:1227)
            at org.apache.hadoop.hive.cli.CliDriver.processLocalCmd(CliDriver.java:233)
            at org.apache.hadoop.hive.cli.CliDriver.processCmd(CliDriver.java:184)
            at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:403)
            at org.apache.hadoop.hive.cli.CliDriver.executeDriver(CliDriver.java:821)
            at org.apache.hadoop.hive.cli.CliDriver.run(CliDriver.java:759)
            at org.apache.hadoop.hive.cli.CliDriver.main(CliDriver.java:686)
            at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
            at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
            at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
            at java.lang.reflect.Method.invoke(Method.java:498)
            at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
            at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
    Caused by: java.lang.ClassNotFoundException: scala.collection.Iterable
            at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
            at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
            at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:349)
            at java.lang.ClassLoader.loadClass(ClassLoader.java:357)

    这是因为hive无法加载spark的jar包,解决办法为:

    $HIVE_HOME/bin/hive

    在执行hive之前添加下面的语句,把spark的jar包添加到hive的class path中

    SPARK_HOME=/home/workspace/software/spark-2.0.0
    for f in ${SPARK_HOME}/jars/*.jar; do
          CLASSPATH=${CLASSPATH}:$f;
    done

    本人添加的位置为:

     或者直接把$SPARK_HOME/jars/spark*复制到$HIVE_HOME/lib下,

    cp $SPARK_HOME/jars/spark*   $HIVE_HOME/lib

    个人感觉修改hive启动脚本更好一些。

    14 参考资料

    https://www.jianshu.com/p/a7f75b868568

  • 相关阅读:
    error: Microsoft Visual C++ 9.0 is required. Get it from http://aka.ms/vcpython27
    C# Console 运行之后最小化到状态栏
    CentOS7 设置防火墙端口
    Spring boot 与quart集成并在Job中注入服务
    Cron表达式周1至周5,每天上午8点至下午18点,每分钟执行一次
    Electron 调用系统Office软件
    jquery之超简单的div显示和隐藏特效demo
    IE系列不支持圆角等CSS3属性的解决方案
    使用CSS3建立不可选的的文字
    ASP.NET中使用TreeView显示文件
  • 原文地址:https://www.cnblogs.com/lenmom/p/10356643.html
Copyright © 2020-2023  润新知