• CCF-201312-4-有趣的数


    问题描述

    试题编号:

    201312-4

    试题名称:

    有趣的数

    时间限制:

    1.0s

    内存限制:

    256.0MB

    问题描述:

    问题描述
      我们把一个数称为有趣的,当且仅当:
      1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次。
      2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前。
      3. 最高位数字不为0。
      因此,符合我们定义的最小的有趣的数是2013。除此以外,4位的有趣的数还有两个:2031和2301。
      请计算恰好有n位的有趣的数的个数。由于答案可能非常大,只需要输出答案除以1000000007的余数。
    输入格式
      输入只有一行,包括恰好一个正整数n (4 ≤ n ≤ 1000)。
    输出格式
      输出只有一行,包括恰好n 位的整数中有趣的数的个数除以1000000007的余数。
    样例输入
    4
    样例输出
    3

    今天刚注册了,就试着写模拟题。这是第四道,很不错的题目。当时没写出来,只能得0分。网上看了别人的代码后才知道得用DP做,就是状态多一些。
    根据题意我们知道,排在第一位的只能是2了。1不可能在第一位,因为所有的0都必须在1的前面,但是0也不能排在第一位,所以就排除了0和1的可能性。又因为所有的2都在3的前面,所以3也不可能排在第一位。于此同时就产生了6种不同的状态,保存在dp数组中。下面详细介绍一下。
    (0):第一种状态就是前面几个数字都只是包含数字2,我们记录为dp[i][0]。表示前i位数字的第一种状态。
    (1):第二种状态就是前面几个数字只包含有数字2和0,因为0必须在1的前面,所以前i位不会出现2和1的组合。当然,这种状态下没有数字1和3。记录为dp[i][1]。
    (2):第三种状态就是前面几个数字只包含有2和3,满足2必须出现在3的前面的情况。没有数字0和1,记录为状态dp[i][2]。
    (3):第四种状态就是前面数字只包含数字2、0、1。满足0出现在1的前面。记录为状态dp[i][3]。
    (4):第五种状态就是前面数字只包含数字2、0、3。满足2出现在3的前面,记录为状态dp[i][4]。
    (5):第六种状态就是0、1、2、3都出现的情况,记录为状态dp[i][5]。
    那么,我们可以得到,不论是哪个i的值,都有dp[i][0]=1。因为前面只有数字2,得到唯一的一个数。
    而dp[i][1] = (2 * dp[i - 1][1] + dp[i - 1][0] ) 这是因为在前面i-1是第状态2的情况下,第i个数有两种选择,2或者0,所以需要乘2。而当i-1是状态1的时候,i只有一个选择就是0,来保证出现0和2的状态。
    同理dp[i][2] = (dp[i - 1][2] + dp[i - 1][0] )这是因为在前面i-1是第3种状态的情况下,第i个数只有一种选择就是数字3,因为2必须出现在3的前面。当前面i-1是第1种状态的时候,也只有一种选择,数字3。这样才能保证是状态3。
    接下来dp[i][3] = (2 * dp[i - 1][3] + dp[i - 1][1] )这个也很好理解,就是说在前面i-1是第4种状态的情况下,有1和2两种选择,需要乘2。当时第2种状态的时候,只有一个选择就是1。
    下面的情况就不说明了,请广大同志们自行脑补,最后写出来的dp就是6种状态。
    最后要用到取模运算的性质,因为这个直接得了好多的0分。
    源代码:
    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string>
    #include<string.h>
    #include<math.h>
    #include<map>
    #include<vector>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define MAX 0x3f3f3f3f
    #define MIN -0x3f3f3f3f
    #define PI 3.14159265358979323
    #define N 1005
    #define num 1000000007 
    __int64 dp[1001][6];
    int main()
    {
    	int n;
    	scanf("%d", &n);
    	int i;
    	memset(dp, 0, sizeof(dp));
    	dp[1][0] = 1;
    	for (i = 2; i <= n; i++)
    	{
    		dp[i][0] = 1;
    		dp[i][1] = (2 * dp[i - 1][1] % num + dp[i - 1][0] % num) % num;
    		dp[i][2] = (dp[i - 1][2] % num + dp[i - 1][0] % num) % num;
    		dp[i][3] = (2 * dp[i - 1][3] % num + dp[i - 1][1] % num) % num;
    		dp[i][4] = ((2 * dp[i - 1][4] % num + dp[i - 1][2] % num) % num + dp[i - 1][1] % num) % num;
    		dp[i][5] = ((2 * dp[i - 1][5] % num + dp[i - 1][4] % num) % num + dp[i - 1][3] % num) % num;
    	}
    	printf("%lld
    ", dp[n][5]);
    	return 0;
    }
    

  • 相关阅读:
    ForeignKey 的第二个位置参数on_delete
    我们为什么要用springcloud?
    使用springcloud zuul构建接口网关
    分布式环境 限流解决方案
    Spring Cloud限流思路及解决方案
    SpringBoot初始教程之Redis集中式Session管理
    分布式高并发下全局ID生成策略
    分布式日志收集收集系统:Flume(转)
    深入理解Java类加载器(ClassLoader) (转)
    各类排序算法复杂度比较
  • 原文地址:https://www.cnblogs.com/lemonbiscuit/p/7776136.html
Copyright © 2020-2023  润新知