• 深度学习——学习笔记(3)神经网络入门(新闻分类)


    # 加载路透社数据集
    from keras.datasets import reuters
    (train_data,train_labels),(test_data,test_labels) = reuters.load_data(num_words=10000)
    
    Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/reuters.npz
    2113536/2110848 [==============================] - 1s 1us/step
    
    
    E:my_softwareanaconda3libsite-packages	ensorflowpythonkerasdatasets
    euters.py:148: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
      x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx])
    E:my_softwareanaconda3libsite-packages	ensorflowpythonkerasdatasets
    euters.py:149: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
      x_test, y_test = np.array(xs[idx:]), np.array(labels[idx:])
    
    len(train_data)
    
    8982
    
    test_labels
    
    array([ 3, 10,  1, ...,  3,  3, 24], dtype=int64)
    
    len(test_data)
    
    2246
    
    train_data[10]
    
    [1,
     245,
     273,
     207,
     156,
     53,
     74,
     160,
     26,
     14,
     46,
     296,
     26,
     39,
     74,
     2979,
     3554,
     14,
     46,
     4689,
     4329,
     86,
     61,
     3499,
     4795,
     14,
     61,
     451,
     4329,
     17,
     12]
    
    # 将索引解码为新闻文本
    word_index = reuters.get_word_index()
    reverse_word_index = dict([(value,key) for (key,value) in word_index.items()])
    decoded_newswire = ' '.join([reverse_word_index.get(i-3,'?') for i in train_data[0]])
    
    Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/reuters_word_index.json
    557056/550378 [==============================] - 0s 1us/step
    
    train_labels[10]
    
    3
    
    # 准备数据
    import numpy as np
    
    def vectorize_sequences(sequences,dimension=10000):
        results = np.zeros((len(sequences),dimension))
        for i, sequence in enumerate(sequences):
            results[i,sequence] = 1
        return results
    
    x_train = vectorize_sequences(train_data)
    x_test = vectorize_sequences(test_data)
    
    def to_one_hot(labels,dimension=46):  # 输出类别是46个
        results = np.zeros((len(labels),dimension))
        for i,label in enumerate(labels):
            results[i,label] = 1
        return results
    
    one_hot_train_labels = to_one_hot(train_labels)
    one_hot_test_labels = to_one_hot(test_labels)
    
    # 模型定义
    from keras import models
    from keras import layers
    
    model = models.Sequential()
    model.add(layers.Dense(64,activation='relu',input_shape=(10000,)))
    model.add(layers.Dense(64,activation='relu'))
    model.add(layers.Dense(46,activation='softmax'))  # 每个输入样本,网络都会输出46维向量,每个维度表示不同的输出类别
    
    # 编译模型
    model.compile(optimizer='rmsprop',  
                 loss = 'categorical_crossentropy',   # 损失函数使用分类交叉熵,衡量网络输入的概率分布和标签的真实分布
                 metrics = ['acc'])
    
    # 留出验证集  1000个样本
    x_val = x_train[:1000]
    partial_x_train = x_train[1000:]
    
    y_val = one_hot_train_labels[:1000]
    partial_y_train = one_hot_train_labels[1000:]
    
    # 训练模型
    history = model.fit(partial_x_train,
                       partial_y_train,
                       epochs=20,
                       batch_size=512,
                       validation_data=(x_val,y_val))
    
    Epoch 1/20
    16/16 [==============================] - 2s 54ms/step - loss: 3.1920 - acc: 0.4216 - val_loss: 1.7198 - val_acc: 0.6360
    Epoch 2/20
    16/16 [==============================] - 1s 36ms/step - loss: 1.4709 - acc: 0.7034 - val_loss: 1.2679 - val_acc: 0.7270
    Epoch 3/20
    16/16 [==============================] - 1s 36ms/step - loss: 1.0407 - acc: 0.7804 - val_loss: 1.1028 - val_acc: 0.7600
    Epoch 4/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.8029 - acc: 0.8301 - val_loss: 1.0156 - val_acc: 0.7750
    Epoch 5/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.6605 - acc: 0.8615 - val_loss: 0.9430 - val_acc: 0.8010
    Epoch 6/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.5219 - acc: 0.8927 - val_loss: 0.9151 - val_acc: 0.8060
    Epoch 7/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.4242 - acc: 0.9141 - val_loss: 0.8901 - val_acc: 0.8090
    Epoch 8/20
    16/16 [==============================] - 1s 37ms/step - loss: 0.3290 - acc: 0.9317 - val_loss: 0.8953 - val_acc: 0.8040
    Epoch 9/20
    16/16 [==============================] - 1s 35ms/step - loss: 0.2787 - acc: 0.9383 - val_loss: 0.9103 - val_acc: 0.7980
    Epoch 10/20
    16/16 [==============================] - 1s 35ms/step - loss: 0.2348 - acc: 0.9482 - val_loss: 0.8917 - val_acc: 0.8180
    Epoch 11/20
    16/16 [==============================] - 1s 35ms/step - loss: 0.2013 - acc: 0.9500 - val_loss: 0.9381 - val_acc: 0.8100
    Epoch 12/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1748 - acc: 0.9571 - val_loss: 0.9009 - val_acc: 0.8230
    Epoch 13/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1582 - acc: 0.9572 - val_loss: 0.9446 - val_acc: 0.8090
    Epoch 14/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1409 - acc: 0.9560 - val_loss: 0.9726 - val_acc: 0.8070
    Epoch 15/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1272 - acc: 0.9612 - val_loss: 0.9624 - val_acc: 0.8160
    Epoch 16/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1260 - acc: 0.9582 - val_loss: 0.9704 - val_acc: 0.8090
    Epoch 17/20
    16/16 [==============================] - 1s 35ms/step - loss: 0.1110 - acc: 0.9627 - val_loss: 1.0493 - val_acc: 0.7980
    Epoch 18/20
    16/16 [==============================] - 1s 36ms/step - loss: 0.1069 - acc: 0.9628 - val_loss: 1.0567 - val_acc: 0.7950
    Epoch 19/20
    16/16 [==============================] - 1s 35ms/step - loss: 0.1038 - acc: 0.9638 - val_loss: 1.0635 - val_acc: 0.7970
    Epoch 20/20
    16/16 [==============================] - 1s 32ms/step - loss: 0.0991 - acc: 0.9620 - val_loss: 1.2842 - val_acc: 0.7650
    
    # 绘制训练损失和验证损失
    import matplotlib.pyplot as plt
    
    loss = history.history['loss']
    val_loss = history.history['val_loss']
    
    epochs = range(1,len(loss)+1)
    
    plt.plot(epochs,loss,'bo',label='Training loss')
    plt.plot(epochs,val_loss,'b',label='Validation loss')
    plt.title('Training and validation loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.show()
    

    # 绘制训练精度和验证精度
    plt.clf()
    
    acc = history.history['acc']
    val_acc = history.history['val_acc']
    
    plt.plot(epochs,acc,'bo',label='Training acc')
    plt.plot(epochs,val_acc,'b',label='Validation acc')
    plt.title('Training and validation acc')
    plt.xlabel('Epochs')
    plt.ylabel('acc')
    plt.legend()
    
    plt.show()  # 第九次出现了过拟合
    

    # 重新训练一个迭代9次的网络
    model = models.Sequential()
    model.add(layers.Dense(64,activation='relu',input_shape=(10000,)))
    model.add(layers.Dense(64,activation='relu'))
    model.add(layers.Dense(46,activation='softmax'))  # 每个输入样本,网络都会输出46维向量,每个维度表示不同的输出类别
    
    model.compile(optimizer='rmsprop',  
                 loss = 'categorical_crossentropy',   # 损失函数使用分类交叉熵,衡量网络输入的概率分布和标签的真实分布
                 metrics = ['acc'])
    
    model.fit(partial_x_train,
           partial_y_train,
           epochs=9,
           batch_size=512,
           validation_data=(x_val,y_val))
    
    results = model.evaluate(x_test,one_hot_test_labels)
    
    Epoch 1/9
    16/16 [==============================] - 2s 48ms/step - loss: 3.1355 - acc: 0.4151 - val_loss: 1.7546 - val_acc: 0.6460
    Epoch 2/9
    16/16 [==============================] - 1s 36ms/step - loss: 1.5295 - acc: 0.6920 - val_loss: 1.3043 - val_acc: 0.7100
    Epoch 3/9
    16/16 [==============================] - 1s 36ms/step - loss: 1.0924 - acc: 0.7680 - val_loss: 1.1147 - val_acc: 0.7590
    Epoch 4/9
    16/16 [==============================] - 1s 35ms/step - loss: 0.8348 - acc: 0.8246 - val_loss: 1.0238 - val_acc: 0.7870
    Epoch 5/9
    16/16 [==============================] - 1s 35ms/step - loss: 0.6446 - acc: 0.8607 - val_loss: 0.9424 - val_acc: 0.8050
    Epoch 6/9
    16/16 [==============================] - 1s 35ms/step - loss: 0.5079 - acc: 0.8983 - val_loss: 0.9296 - val_acc: 0.8050
    Epoch 7/9
    16/16 [==============================] - 1s 36ms/step - loss: 0.3936 - acc: 0.9246 - val_loss: 0.8924 - val_acc: 0.8090
    Epoch 8/9
    16/16 [==============================] - 1s 35ms/step - loss: 0.3364 - acc: 0.9317 - val_loss: 0.8653 - val_acc: 0.8190
    Epoch 9/9
    16/16 [==============================] - 1s 33ms/step - loss: 0.2872 - acc: 0.9419 - val_loss: 0.8967 - val_acc: 0.8060
    71/71 [==============================] - 0s 2ms/step - loss: 0.9991 - acc: 0.7867
    
    results  # 损失,精度
    
    [0.9991146326065063, 0.7867319583892822]
    
    # 和一个随机的分类器进行比较
    import copy 
    test_labels_copy = copy.copy(test_labels)
    np.random.shuffle(test_labels_copy)
    hits_array = np.array(test_labels) == np.array(test_labels_copy)
    float(np.sum(hits_array)) / len(test_labels)
    
    0.19323241317898487
    
    # 相比于随机分类器,我们的模型可以达到78的准确率,完全OK
    
    # 在新数据上预测
    predictions = model.predict(x_test)
    
    predictions[0].shape
    
    (46,)
    
    np.sum(predictions[0])
    
    1.0
    
    np.argmax(predictions[0])  # 概率最大的类别
    
    3
    
  • 相关阅读:
    mac系统终端的color scheme配置和vim配置
    用子网掩码划分子网
    堆排序
    面试遇到两个稍显变态的题目,mark一下
    移动端适配的问题
    移动端click事件延时
    行内元素之间间距的产生与去除
    JS怎么判断一个对象是否为空
    Java面向对象基础
    Java中的final关键字
  • 原文地址:https://www.cnblogs.com/lelezuimei/p/14208647.html
Copyright © 2020-2023  润新知