• P5491 【模板】二次剩余


    \(\text{Summary}\)

    实际上是做法的归纳
    一切皆是结论性的,没有证明!

    \(p\) 意义下的二次剩余有 \(\frac{p-1}2\) 个,二次非剩余也恰有那么多

    考虑解关于 \(x\) 的同余方程

    \[x^2 \equiv n \pmod p \]

    \(n=0\) 时,\(x=0\) 是唯一解
    \(n \not= 0\) 时,若方程有解,则只有两个互为相反数的解
    判断有无解:欧拉准则
    考虑 \(n^{\frac{p-1}{2}}\)\(p\) 的结果
    \((n^{\frac{p-1}{2}})^2 \equiv 1 \pmod p\)
    只其结果只为 \(1\)\(-1\)
    \(1\) 时有解,\(-1\) 时无解

    求解的话,先随机找到一个 \(a\) 满足 \(a^2 - n\) 为二次非剩余,令 \(i^2 = a^2 - n \equiv -1 \pmod p\)
    类似实部和虚部,定义这个 \(i\)

    \[(a+i)^{p+1} \equiv n \pmod p \]

    证明的话,有
    \(\text{Lemma 1}\)

    \[i^p \equiv -i \pmod p \]

    \(\text{Lemma 2}\)

    \[(x+y)^p \equiv x^p+y^p \pmod p \]

    然后

    \[\begin{aligned} (a+i)^{p+1} & \equiv (a+i)^p(a+i) \\ &\equiv (a+i)(a^p+i^p) \\ &\equiv (a+i)(a-i) \\ &\equiv a^2-i^2 \\ &\equiv n \pmod p \end{aligned} \]

    \(p+1\) 为偶数,开方就很容易了
    具体实现弄上“复数”即可
    \((a+i)^{\frac{p+1}2}\) 的“虚部” 为 \(0\)

    \(\text{Code}\)

    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #define IN inline
    using namespace std;
    typedef long long LL;
    
    int T, n, p;
    LL i2;
    
    struct complex {
    	LL x, y;
    	IN complex(LL _x, LL _y) {x = _x, y = _y;}
    	IN bool operator == (complex a) {return (a.x == x && a.y == y);}
    	IN complex operator * (complex a) {
    		return complex((a.x * x % p + a.y * y % p * i2 % p) % p, (a.x * y % p + a.y * x % p) % p);
    	}
    };
    
    IN complex power(complex x, int y) {
    	complex s = complex(1, 0);
    	for(; y; y >>= 1, x = x * x) if (y & 1) s = s * x;
    	return s;
    }
    IN int check(LL a) {return power(complex(a, 0), p - 1 >> 1) == complex(1, 0);}
    
    IN void solve() {
    	if (!n) {printf("0\n"); return;}
    	if (power(complex(n, 0), p - 1 >> 1) == complex(p - 1, 0)) {printf("Hola!\n"); return;}
    	LL a = rand() % p;
    	while (!a || check((a * a % p - n + p) % p)) a = rand() % p;
    	i2 = (a * a % p - n + p) % p;
    	int x0 = power(complex(a, 1), p + 1 >> 1).x, x1 = p - x0;
    	if (x0 > x1) swap(x0, x1);
    	printf("%d %d\n", x0, x1);
    }
    
    int main() {
    	scanf("%d", &T);
    	for(; T; --T) scanf("%d%d", &n, &p), solve();
    }
    
  • 相关阅读:
    pandas的简单使用
    java搭建web从0-1(第一步:创建web工程)
    android通过命令行安装sdk
    iOS8不能通过itms-services协议下载安装app
    date命令转换日期命令提示date: illegal time format
    mac通过命令行获取证书和配置文件过期时间
    jenkin 不必要的Execute shell执行失败,导致jenkins都失败的解决
    命令行执行jenkins,构建job(可传递参数)
    Eclipse启动分析。。
    java非web应用修改 properties/xml配置文件后,无需重启应用即可生效---自动加载
  • 原文地址:https://www.cnblogs.com/leiyuanze/p/16479628.html
Copyright © 2020-2023  润新知