\(\text{Summary}\)
实际上是做法的归纳
一切皆是结论性的,没有证明!
模 \(p\) 意义下的二次剩余有 \(\frac{p-1}2\) 个,二次非剩余也恰有那么多
考虑解关于 \(x\) 的同余方程
\[x^2 \equiv n \pmod p
\]
当 \(n=0\) 时,\(x=0\) 是唯一解
当 \(n \not= 0\) 时,若方程有解,则只有两个互为相反数的解
判断有无解:欧拉准则
考虑 \(n^{\frac{p-1}{2}}\) 模 \(p\) 的结果
由 \((n^{\frac{p-1}{2}})^2 \equiv 1 \pmod p\)
只其结果只为 \(1\) 或 \(-1\)
\(1\) 时有解,\(-1\) 时无解
求解的话,先随机找到一个 \(a\) 满足 \(a^2 - n\) 为二次非剩余,令 \(i^2 = a^2 - n \equiv -1 \pmod p\)
类似实部和虚部,定义这个 \(i\)
有
\[(a+i)^{p+1} \equiv n \pmod p
\]
证明的话,有
\(\text{Lemma 1}\)
\[i^p \equiv -i \pmod p
\]
\(\text{Lemma 2}\)
\[(x+y)^p \equiv x^p+y^p \pmod p
\]
然后
\[\begin{aligned}
(a+i)^{p+1} & \equiv (a+i)^p(a+i) \\
&\equiv (a+i)(a^p+i^p) \\
&\equiv (a+i)(a-i) \\
&\equiv a^2-i^2 \\
&\equiv n \pmod p
\end{aligned}
\]
\(p+1\) 为偶数,开方就很容易了
具体实现弄上“复数”即可
且 \((a+i)^{\frac{p+1}2}\) 的“虚部” 为 \(0\)
\(\text{Code}\)
#include <cstdio>
#include <algorithm>
#include <iostream>
#define IN inline
using namespace std;
typedef long long LL;
int T, n, p;
LL i2;
struct complex {
LL x, y;
IN complex(LL _x, LL _y) {x = _x, y = _y;}
IN bool operator == (complex a) {return (a.x == x && a.y == y);}
IN complex operator * (complex a) {
return complex((a.x * x % p + a.y * y % p * i2 % p) % p, (a.x * y % p + a.y * x % p) % p);
}
};
IN complex power(complex x, int y) {
complex s = complex(1, 0);
for(; y; y >>= 1, x = x * x) if (y & 1) s = s * x;
return s;
}
IN int check(LL a) {return power(complex(a, 0), p - 1 >> 1) == complex(1, 0);}
IN void solve() {
if (!n) {printf("0\n"); return;}
if (power(complex(n, 0), p - 1 >> 1) == complex(p - 1, 0)) {printf("Hola!\n"); return;}
LL a = rand() % p;
while (!a || check((a * a % p - n + p) % p)) a = rand() % p;
i2 = (a * a % p - n + p) % p;
int x0 = power(complex(a, 1), p + 1 >> 1).x, x1 = p - x0;
if (x0 > x1) swap(x0, x1);
printf("%d %d\n", x0, x1);
}
int main() {
scanf("%d", &T);
for(; T; --T) scanf("%d%d", &n, &p), solve();
}