• 迭代器和生成器


    本节导读:

    • 可迭代对象
    • 迭代器
    • 可迭代和迭代器的区别
    • 判断迭代器和可迭代对象的方法
    • 生成器

    一 可迭代对象

    什么叫迭代?:一个一个取值,就像for循环一样取值

    可以直接作用于for循环的对象统称为可迭代对象:Iterable,有以下两类

    • 一类是集合数据类型,如listtupledictsetstr等;
    • 一类是generator,包括生成器和带yield的generator function。

    迭代器协议:可以被迭代要满足要求的就叫做可迭代协议。内部实现了__iter__方法

    二 迭代器

      可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator,其内部实现了__iter__,__next__方法,

    迭代器大部分都是在python的内部去使用的,我们直接拿来用就行了

      迭代器的优点:如果用了迭代器,节约内存,方便操作

    三 可迭代和迭代器的相同点和不同点

      都可以用for循环,迭代器内部多实现了一个__next__方法

    四判断迭代器和可迭代对象的方法

    第一种:判断内部是不是实现了__next__方法

     '__iter__' in dir(str)#如果__iter__在这个方法里面,就是可迭代的。

    第二种:

    Iterable 判断是不是可迭代对象

    Iterator 判断是不是迭代器

    from collections import Iterable  
    from collections import Iterator
    
    #比如给一个字符串
    s='abc'
    print(isinstance(s,Iterable))#isinstance判断类型的
    print(isinstance(s,Iterator))
    
    #判断range和map函数
    map1=map(abs,[1,-2,3,-4])
    print(isinstance(map1,Iterable))
    print(isinstance(map1,Iterator))#map方法自带迭代器
    
    s=range(100)#是一个可迭代的,但是不是迭代器
    print(isinstance(s,Iterable))
    print(isinstance(s,Iterator))

    五 生成器

    列表生成式

    # ======一层循环======
    l = [i*i for i in range(1,10)]
    print(l)
    # 上面的列表推倒式就相当于下面的
    l  = []
    for i in range(1,10):
        l.append(i*i)
    print(l)
    l = []
    
    
    # ======多层循环========
    # 1.列表推倒式
    l = [i*j for i in range(1,10) for j in range(1,10)]
    print(l)
    # 2.循环
    l = []
    for i in range(1,10):
        for j in range(1,10):
            s = i*j
            l.append(s)
    print(l)

      通过列表生成式,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    生成器不必创建完整的list,通过next()方法随用随取,从而节省大量的空间。

    生成器的创建

    • 生成器表达式
      只要把一个列表生成式的[]改成(),
    • yield生成器函数,
      遇到yeild,函数就冻结,并返回yeild后面的值,同过next()方法,使函数继续从yeild之后执行
      如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用次方法来实现。

    yield函数:

    • send 用法
      def test():
          for i in range(10):
               ret = yield
               print('这是send发送的结果',ret)
      
      a = test()
      next(a)  # 在send数据前必须要先next一下,不然会报错
      a.send('asdf')
    • yield from 用法
      def func():
          # for i in 'AB':
          #     yield i
          yield from 'AB'     yield from 'AB'就相当于上面的for循环,吧循环简化了
          yield from [1,2,3]
      
      g=func()
      print(list(g))
      # print(next(g))
      # print(next(g))
      
      

      你可能会问,为什么listdictstr等数据类型不是Iterator

    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

    小结

    生成器都是Iterator对象,但listdictstr虽然是Iterable,却不是Iterator

    凡是可作用于for循环的对象都是Iterable类型;

    凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;

    集合数据类型如listdictstr等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

    Python3的for循环本质上就是通过不断调用next()函数实现的

  • 相关阅读:
    LINQ查询表达式(1)
    JSON是什么
    .net序列化
    wampserver
    JQuery系列(1)
    c# 数据类型转换
    并不对劲的uoj311.[UNR #2]积劳成疾
    并不对劲的uoj308.[UNR #2]UOJ拯救计划
    并不对劲的CF1349B&C:Game of Median Life
    并不对劲的复健训练-CF1329B&C:Heap Sequences
  • 原文地址:https://www.cnblogs.com/leiyiming/p/9043208.html
Copyright © 2020-2023  润新知