• 统计学习方法第一章


    一、统计学习三要素

    1.模型:要学习的条件概率分布或决策函数。模型的假设空间包含所有可能的条件概率分布或决策函数。例如:假设决策函数是输入变量的线性函数,那么模型的假设空间就是所有这些线性函数构成的函数集合,此时为无穷个。
    这也就是为什么说:条件概率分布(P(y|x))和函数(y=f(x))可以相互转换
    条件概率分布最大化后得到函数:决策准则是最大可能性时,决策函数自然取条件概率的最大值。
    函数归一化后得到条件概率分布:决策函数归一化之后满足概率公理,当然可以看作条件概率。决策函数的定义域通常是有限点集。
    2. 策略:统计学习的目的是从假设空间中选取最优模型,需要损失函数和风险函数。
    3. 算法:用什么样的算法求解最优模型。比如梯度下降

    二、正则化的作用是选择经验风险与模型复杂度同时较小的模型

    从贝叶斯估计角度看,正则化项对应于模型的先验概率。假设复杂的模型有较小的先验概率。简单的模型有较大的先验概率。

    三、生成模型和判别模型

    生成模型:由数据学习联合概率分布(P(X,Y)),然后求出条件概率分布(P(Y|X))作为预测的模型

    [P(Y|X)=frac{P(X,Y)}{P(X)} ]

    典型的生成模型:朴素贝叶斯,HMM.
    判别模型:由数据直接学习决策函数(f(X))或者条件概率分布(P(Y|X))作为预测的模型。
    典型的判别模型:k近邻,感知机,决策树,LR,SVM,条件随机场。

    四、第一章习题

    1.2通过经验风险最小化推导极大似然估计,证明模型是条件概率分布,损失函数是对数损失函数时,经验风险最小化等价于极大似然估计。
    经验风险最小化即求解下列最优化问题:

    当模型是条件概率分布,损失函数是对数损失函数时,上述问题等价于:

    考虑到N是常数,因此,上述上述问题又等价于:

    这就是极大似然估计。

  • 相关阅读:
    leetcode 199 二叉树的右侧视图 js 实现
    js 实现二叉树前序遍历
    js 实现 LRU 算法
    js 创建二维数组
    js中 substr 和substring的区别
    js 实现二叉树后序遍历
    js 实现快速排序
    js 实现解析和构造Url参数
    leetcode 1019. 链表中的下一个更大节点 js实现
    babel编译原理过程简单记录
  • 原文地址:https://www.cnblogs.com/leimu/p/13652824.html
Copyright © 2020-2023  润新知