• Graph-tool简介


    graph-tool is a Python module for manipulation and statistical analysis of graphs[disambiguation needed] (a.k.a. networks).

    graph-tool是一个操作和统计分析图表的Python模块。

    The core data structures and algorithms of graph-tool are implemented in C++, making extensive use of metaprogramming, based heavily on the Boost Graph Library.

    graph-tool核心的数据结构和算法是用c++实现的,其大量使用元编程,依赖于Boost Graph库。

    This type of approach can confer a level of performance which is comparable (both in memory usage and computation time) to that of a pure C++ library, which can be several orders of magnitude better than pure Python.[1]

    这种方法会带来一定程度的性能优势,甚至能与纯c++库相匹敌(在内存使用和计算时间上),这可以比单纯使用Python好几个数量级。

    Furthermore, many algorithms are implemented in parallel using OpenMP, which provides increased performance on multi-core architectures.

    此外,许多算法由并行使用OpenMP实现,这使得其在多核体系结构机器上的性能有显著提升。


    内容

    1. 特征
    2. 适用性
    3. 参考文献
    4. 外部链接

    1.特征

    Creation and manipulation of directed or undirected graphs.

    • 直接或间接地创建和操纵图表。

    Association of arbitrary information to the vertices, edges or even the graph itself, by means of property maps.

    • 通过属性映射,将任意的信息与顶点、边甚至是图本身相关联起来。

    Filter vertices and/or edges "on the fly", such that they appear to have been removed.

    • “动态”地过滤顶点和/或边,这样它们看起来似乎已经被移除。

    Support for dot, Graph Modelling Language and GraphML formats.

    • 支持点,图形建模语言和GraphML格式。

    Convenient and powerful graph drawing based on cairo or Graphviz.

    • 便捷和强大的图形绘制能力(基于cairo和Graphviz)。

    Support for typical statistical measurements: degree/property histogram, combined degree/property histogram, vertex-vertex correlations, assortativity, average vertex-vertex shortest path, etc.

    • 支持典型的统计指标:degree/property直方图,combined degree/property直方图,vertex-vertex相关性,assortativity vertex-vertex平均最短路径等。

    Support for several graph-theoretical algorithms: such as graph isomorphism, subgraph isomormism, minimum spanning tree, connected components, dominator tree, maximum flow, etc.

    • 支持几个图形理论算法:例如,图同构,子图同构,最小生成树,连接组件,支配树,最大流法。

    Support for several centrality measures.

    • 支持多种中心性。

    Support for clustering coefficients, as well as network motif statistics and community structure detection.

    • 支持集群系数,以及网络motif统计和群体结构检测。

    Generation of random graphs, with arbitrary degree distribution and correlations.

    • 具有任意分布度和相关性的随机图的生成,。

    Support for well-established network models: Price, Barabási-Albert, Geometric Networks, Multidimensional lattice graph, etc.

    • 支持已经建立的网络模型:如,Price、Barabasi-Albert、几何网络多维网格图等。

    2.适用性

    Graph-tool can be used to work with very large graphs in a variety of contexts, including
    Graph-tool可以用来处理各种情况下非常大的图,包括

    simulation of cellular tissue
    模拟细胞组织
    data mining
    数据挖掘
    analysis of social networks
    社交网络分析
    analysis of P2P systems,[7]
    P2P系统分析
    large-scale modeling of agent-based systems,[8]
    大规模的基于主体系统的建模
    study of academic Genealogy trees,[9]
    研究学术家谱树
    theoretical assessment
    理论评估
    and modeling of network clustering,[10]
    网络聚类和建模
    large-scale call graph analysis,[11][12]
    大规模的调用图分析
    and analysis of the brain's Connectome.[13]
    分析大脑的连接体


    3.参考文献

    参见原链接


    4.外部链接

    Graph-tool官网


    来源网址:Graph-tool - From Wikipedia, the free encyclopedia

  • 相关阅读:
    什么是php面向对象及面向对象的三大特性
    php类的定义与实例化方法
    php面向对象之$this->用法简述
    url的主要功能是什么
    PHP字符串比较函数详解
    PHP截取字符串函数substr()函数实例用法详解
    php 读取文件
    php 正则达达示中的模式修正符
    php正则表示中的元字符
    php 正则表达示中的原子
  • 原文地址:https://www.cnblogs.com/leezx/p/5565200.html
Copyright © 2020-2023  润新知