• GSEABase做GSEA富集分析


    参考:生信技能树 - 代码有所更新

    获取单细胞测试数据

    # devtools::install_github("satijalab/seurat-data")
    
    library(SeuratData)
    
    # AvailableData()
    
    # InstallData("pbmc3k.SeuratData")
    
    data(pbmc3k)
    
    exp <- pbmc3k@assays$RNA@data
    
    dim(exp)
    
    # exp[1:5,1:5]
    
    table(is.na(pbmc3k$seurat_annotations))
    
    table(pbmc3k$seurat_annotations)
    
    library(Seurat)
    
    pbmc3k@active.ident <- pbmc3k$seurat_annotations
    
    table(pbmc3k@active.ident)
    
    deg <- FindMarkers(pbmc3k, ident.1 = "Naive CD4 T", ident.2 = "B")
    
    # head(deg)
    
    dim(deg)
    

      

    GSEA分析

    # if (!requireNamespace("BiocManager", quietly = TRUE))
    #     install.packages("BiocManager")
    
    # BiocManager::install("GSEABase")
    
    library(GSEABase)
    library(ggplot2)
    library(clusterProfiler)
    library(org.Hs.eg.db)
    
    # API 1
    geneList <- deg$avg_logFC
    names(geneList) <- toupper(rownames(deg))
    geneList <- sort(geneList, decreasing = T)
    head(geneList)
    
    # API 2
    # gmtfile <- "../EllyLab//human/singleCell/MsigDB/msigdb.v7.4.symbols.gmt"
    
    gmtfile <- "../EllyLab//human/singleCell/MsigDB/c5.go.bp.v7.4.symbols.gmt"
    
    geneset <- read.gmt(gmtfile)
    
    length(unique(geneset$ont))
    
    egmt <- GSEA(geneList, TERM2GENE = geneset, minGSSize = 1, pvalueCutoff = 0.99, verbose = F)
    
    # head(egmt)
    
    gsea.out.df <- egmt@result
    
    # gsea.out.df
    
    # head(gsea.out.df$ID)
    
    library(enrichplot)
    

      

    出图 - 基因数据足够才够漂亮

    options(repr.plot.width=6, repr.plot.height=4)
    gseaplot2(egmt, geneSetID = "GOBP_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY", pvalue_table = T)
    

      

    原始的图不够漂亮,优化可以参考阿汤哥的paper

    这个图的代码不错,不知道他们paper里有没有分享。

    2019 - Single-cell RNA-seq analysis reveals the progression of human osteoarthritis

  • 相关阅读:
    python中字母的大小写转换
    十进制转换为16进制
    查找数组中出现次数超过一半的数
    leetcode二分查找
    leetcode 3 字符串
    leetcode链表篇
    leetcode数组篇
    重构二叉树
    矩阵的特征向量和特征值
    微软编程
  • 原文地址:https://www.cnblogs.com/leezx/p/14754812.html
Copyright © 2020-2023  润新知