• ggplot的boxplot添加显著性 | Add P-values and Significance Levels to ggplots | 方差分析


    参考:Add P-values and Significance Levels to ggplots

    ggpubr的包比较局限,能用的test也比较局限,但是做起来快速简单。

    当情况特殊时ggpubr就不能用了,可以自己做了显著性test之后再显示在图上。

    # show lable in facet grid plot
    dat_text <- data.frame()
    for (i in names(paired_list)) {
        # Compute t-test
        res <- t.test(value ~ group, data = paired_list[[i]], paired = TRUE)
        dat_text <- rbind(dat_text, data.frame(variable=i, pvalue=res$p.value))
    }
    
    dat_text$label <- paste("P", round(dat_text$pvalue, 3), sep="=")
    
    dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label <- paste("*", 
                                      dat_text[dat_text$pvalue<0.05 & dat_text$pvalue>0.01,]$label, sep=" ")
    
    dat_text[dat_text$pvalue<0.01,]$label <- paste("**", "P<0.01", sep=" ")
    
        library(ggplot2) 
        options(repr.plot.width=8, repr.plot.height=12) # 8x8
        g2 <- ggplot(data=genes_expr_melt, aes(x=pseudotime, y=value, fill=group, color=group)) +
            geom_point(size=0.01, alpha=0.5, aes(color=group, fill=group)) +
            labs(x = "Pseudotime", y = "Relative expression", title = "Neuronal lineage") +
            geom_smooth(method = 'loess',se=F,size=0.15,span = 0.7) + # ,alpha=0.05, weight=0.1,
            facet_wrap( ~ variable, ncol=3, labeller = label_context, scales = "free_y") + # 
            geom_text(size    = 5, data    = dat_text, mapping = aes(x = Inf, y = Inf, label = label),
                hjust   = 1.05,vjust   = 1.5, color=ifelse(dat_text$pvalue < 0.05,'red','black')) +
            # themes
            theme(strip.background = element_blank(),
                 panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
                 panel.spacing=unit(.4, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.5))+
            theme(axis.text.x  = element_text(face="plain", angle=0, size = 10, color = "black", vjust=0.5),
                axis.text.y  = element_text(face="plain", size = 10, color = "black"),
                axis.title =element_text(size = 15)) +
            theme(strip.background = element_rect(fill = "gray90", color = NA))+
              # theme(legend.position = "none") + # must remove legend
              theme(strip.placement = "outside", strip.text.x = element_text(face="plain", size = 13),
                      strip.text.y = element_text(face="plain", size = 11)) +
            theme(strip.text.x = element_text(margin = margin(1,0,1,0, "mm"))) +
            scale_color_manual(values=c("deepskyblue","red","gray50")) +
            scale_fill_manual(values=c("deepskyblue","red","gray50"))
        plot(g2)
    # }

    多组比较,挑选感兴趣的显示显著性。

    data("ToothGrowth")
    head(ToothGrowth)  
    library(ggpubr)
    my_comparisons <- list( c("0.5", "1"), c("1", "2"), c("0.5", "2") )
    options(repr.plot.width=4, repr.plot.height=4)
    ggplot(ToothGrowth, aes(x=as.character(dose), y=len, fill=dose)) +
      geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) +
      geom_jitter(width = 0.3, size=0.01) +# , aes(color=supp) +
      stat_compare_means(comparisons = my_comparisons)+ # Add pairwise comparisons p-value
      stat_compare_means(label.y = 50, label.x = 1.5)     # Add global p-value
    

    还可以设定一个ref group来显示显著性差异,只需要改一下设定。

      stat_compare_means(method = "anova", label.y = 1.3, label.x = 3)+ # Add pairwise comparisons p-value
      # # Add global p-value
      stat_compare_means(label = "p.signif", method = "t.test", ref.group = "hNP-D20", label.y = 1.1) + 
    

      

    生物学的强烈推荐看看Y叔的公众号里的统计相关的文章,非常的基础和实用。

    统计

    代码例子:

    options(repr.plot.width=7, repr.plot.height=6)
    # facet boxplot
    bp <- ggplot(expr_data2, aes(x=group, y=expression, fill=NA)) + 
      geom_boxplot(outlier.size=NA, size=0.01, outlier.shape = NA) + 
      geom_jitter(width = 0.3, size=0.01, aes(color=cluster)) +
      # + geom_boxplot( + 
      facet_grid( cluster ~ gene, switch="y") + # , scales = "free"
      theme_bw() + 
      stat_compare_means(aes(group = group, label = ..p.signif..), label.x = 1.3,label.y = 1.3, 
                         method = "wilcox.test", hide.ns = T) + # label = "p.format",
      theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) +
      labs(x = "", y = "", title = "") +
      theme(panel.spacing=unit(.3, "lines"),panel.border = element_rect(color = "black", fill = NA, size = 0.2)) +
      theme(axis.ticks.x = element_blank(), axis.ticks = element_line(size = 0.1), 
            axis.text.x  = element_text(face="plain", angle=90, size = 8, color = "black", vjust=0.5),
            axis.text.y  = element_text(face="plain", size = 4, color = "black"),
            axis.title =element_text(size = 12)) +
      theme(strip.background = element_rect(fill = "gray97", color = NA))+
      theme(legend.position = "none") +
      theme(strip.placement = "outside", strip.text.x = element_text(face="italic", size = 11),
              strip.text.y = element_text(face="plain", size = 11)) +
      scale_y_continuous(position="right", limits = c(-0.5,1.5)) +
      scale_fill_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)]) +
      scale_color_manual(values=brewer.pal(8,"Set2")[c(2,3,7,1,5,6)])
    bp
    

      

  • 相关阅读:
    phpcms 任意位置获取用户头像
    php微信公众帐号发送红包
    nginx解决502错误
    phpcms v9 万能字段使用
    0转换为万
    温故而知新(三)
    温故而知新(一)
    基础积累,来自其他网站的链接
    GCD多线程 在子线程中获取网络图片 在主线程更新
    iOS9 中的一些适配问题
  • 原文地址:https://www.cnblogs.com/leezx/p/10440050.html
Copyright © 2020-2023  润新知