• Hadoop-MR实现日志清洗(三)


    Hadoop-MR实现日志清洗(三)

    5.论坛请求日志清洗解析

    请求日志的清洗主要是指过滤掉跟后续统计无关的数据,包括爬虫数据、静态资源数据、无用数据列等。根据需要,清洗过程中也可以对部门数据域进行数据转换,比如日期,以便简化后续的数据加工/统计分析。

    对日志的清洗逻辑上也是分为编写map、reduce、run(main)函数,在对输入数据处理时,日志的提取过滤较为复杂,通常是将文件处理的方法单独编写作为解析类,由map调用相关的方法。

    5.1解析日志的各个域

    单独编写的解析类,给map函数调用

    package com.leeyk99.hadoop;
    
    import java.text.ParseException;
    
    import java.text.SimpleDateFormat;
    
    import java.util.Date;
    
    import java.util.Locale;
    
    /**
    
    * 解析日志的每个数据列:日志的数据域大致可分为:IP 、"-"、"-"、TIME、URL、STATUS、STREAM、?、?等等
    
    * @author LIN
    
    */
    
    public class FieldParser {
    
        public static final SimpleDateFormat dateFormat = new SimpleDateFormat("yyyyMMddHHmmss");
    
        public static final SimpleDateFormat FORMAT=new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.ENGLISH);
    
        /**
    
         * 解析日志记录
    
         * @return 数组,含有五个元素,分别是IPTIMEURLSTAUS流量
    
         */
    
        public String[] parseLog(String line){
    
            String ip=parseIP(line);
    
            String time=parseTime(line);
    
            String url=parseURL(line);
    
            String status=parseStatus(line);
    
            String stream=parseStream(line);
    
            String[] fields=new String[5];
    
            fields[0]=ip;
    
            fields[1]=time;
    
            fields[2]=url;
    
            fields[3]=status;
    
            fields[4]=stream;
    
            //String[] fields=new String[]{ip,time,url,status,stream};
    
            return fields;
    
        }
    
        private String parseStream(String line) {
    
            try{
    
                final String trim = line.substring(line.lastIndexOf(""")+1).trim();
    
                String stream = trim.split(" ")[1];
    
                return stream;
    
            }catch (ArrayIndexOutOfBoundsException e){
    
                e.printStackTrace();
    
                System.out.println(line);
    
            }finally{
    
                return null;
    
            }
    
        }
    
        private String parseStatus(String line) {
    
            final String trim = line.substring(line.lastIndexOf(""")+1).trim();
    
            String status = trim.split(" ")[0];
    
            return status;
    
        }
    
        private String parseURL(String line) {
    
            final String trim = line.split(""")[1].trim();
    
            String url = trim;
    
            return url;
    
        }
    
        private String parseTime(String line) {
    
            final String trim = line.split(""")[0].trim();
    
            String time = trim.split(" ")[3].substring(1);
    
            Date date=parseDateFormat(time);//原始字符串解析成date才能方便格式化为指定的字符串样式
    
            time=dateFormat.format(date);//转成20180903101923格式
    
            return time;
    
        }
    
        private String parseIP(String line) {
    
            final String trim = line.split(" ")[0].trim();
    
            String ip = trim;
    
            return ip;
    
        }
    
        /**
    
         * 日志时间转换  18/Sep/2013:16:16:16
    
         * @author LIN
    
         * @param 18/Sep/2013:16:16:16
    
         */
    
        private Date parseDateFormat(String time){
    
            Date formatTime=new Date();
    
            try{
    
                formatTime =FORMAT.parse(time);//FORMAT.parse解析String类型返回Date类型,FORMAT.format解析Date类型返回字符串类型
    
            }catch (ParseException e){
    
                e.printStackTrace();
    
            }
    
            return  formatTime;
    
        }
    
    }

    5.2编写map函数

    这里也演示了如何对多个字段进行传递输出的方法。

    package com.leeyk99.hadoop.mapreduce;
    
    import com.leeyk99.hadoop.FieldParser;
    
    import org.apache.hadoop.io.LongWritable;
    
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Mapper;
    
    import java.io.IOException;
    
    public class LogMapper extends Mapper<LongWritable,Text,LongWritable,Text> {
    
        @Override
    
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
    
            //super.map(key, value, context);
    
            String line=value.toString();
    
            FieldParser fieldParser=new FieldParser();
    
            String[] record=fieldParser.parseLog(line);
    
            /*数据预处理*/
    
            //1.过滤指定字符串开头的数据
    
            if( record[2].startsWith("GET /uc_server") || record[2].startsWith("GET /static") ){ //测试过滤数据
    
                return;
    
            }
    
            //2.数据域加工,这里是字符串截取
    
            if( record[2].startsWith("GET /")){
    
                record[2]=record[2].substring("GET /".length()-1);//或者5
    
            }else if(record[2].startsWith("POST /")){
    
                record[2]=record[2].substring("POST /".length()-1);
    
            }
    
            if (record[2].endsWith(" HTTP/1.1")){
    
                //System.out.println("1"+record[2]);
    
                record[2]=record[2].substring(0,record[2].length()-" HTTP/1.1".length());
    
                //System.out.println("2"+record[2]);
    
            }
    
            //3.列裁剪,进一步选取指定的列
    
            Text outPutValue=new Text();
    
            outPutValue.set(record[0]+"01"+record[1]+"01"+record[2]); //指定了01分隔符
    
            /*map输出,这个输出key使用的是LongWritable,输出的还是行号,没有像往常使用Text(维度)
    
            输出是Text,不像我们平时的IntWritable或DoubleWritable,这个不是在reduce中进行与group by类似计算的*/
    
            context.write(key,outPutValue);
    
        }
    
    }

    5.3编写reducer函数

    package com.leeyk99.hadoop.mapreduce;
    
    import org.apache.hadoop.io.LongWritable;
    
    import org.apache.hadoop.io.NullWritable;
    
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Reducer;
    
    import java.io.IOException;
    
    public class LogReducer extends Reducer<LongWritable, Text, Text, NullWritable> {
    
        @Override
    
        protected void reduce(LongWritable key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
    
            //super.reduce(key, values, context);
    
            for(Text value : values){
    
                context.write(value, NullWritable.get());
    
            }
    
        }
    
    }

    5.4编写入口函数(main函数、run函数)

    package com.leeyk99.hadoop.mapreduce;
    
    //import org.apache.hadoop.conf.Configuration;
    
    import org.apache.hadoop.conf.Configured;
    
    import org.apache.hadoop.fs.FileSystem;
    
    import org.apache.hadoop.fs.Path;
    
    import org.apache.hadoop.io.LongWritable;
    
    import org.apache.hadoop.io.NullWritable;
    
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Job;
    
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    //import org.apache.hadoop.util.GenericOptionsParser;
    
    import org.apache.hadoop.util.Tool;
    
    import org.apache.hadoop.util.ToolRunner;
    
    //import java.io.File;
    
    import java.net.URI;
    
    public class LogParser extends Configured implements Tool {
    
        //不能使用小写override
    
        //@Override 实现接口的方法不能注释为重写,一直红色波浪线提示不合规,程序运行正常,找了好久这个位置的异常。
    
        public int run(String[] args) throws Exception{
    
            if(args.length != 2){
    
                System.err.printf("Usage: %s [generic options ] <input> <output> 
    ",getClass().getSimpleName());
    
                ToolRunner.printGenericCommandUsage(System.err);
    
                return -1;
    
            }
    
            //getClass() 、getConf()
    
            //方法1:Hadoop权威指南写法
    
            /*Job job=new Job(getConf(),"Log parser");
    
            job.setJarByClass(getClass());*/
    
            //方法二:main写法,最简单写法
    
            Job job=new Job();
    
            job.setJarByClass(getClass());//getClass() 获取类名 LogParser.class
    
            job.setJobName("Log parser");
    
            //方法三:Configuration写法,网上写法
    
            /*Configuration conf=new Configuration();
    
            //String[] otherArgs=new GenericOptionsParser(conf,args).getRemainingArgs();
    
            Job job=new Job(conf, "Job_001");//新建一个job对象,并给了job任务名
    
            job.setJarByClass(LogParser.class);  //指定class
    
            //FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //输入路径
    
            //FileOutputFormat.setOutputPath(job,new Path(otherArgs[1])); //输出路径*/
    
            FileInputFormat.addInputPath(job,new Path(args[0]));
    
            FileOutputFormat.setOutputPath(job,new Path(args[1]));
    
            job.setMapperClass(LogMapper.class);
    
            job.setMapOutputKeyClass(LongWritable.class); //与Reducer的不一致,需要指定
    
            job.setMapOutputValueClass(Text.class);
    
            /*使用这个后,map一直卡在22%不动,因为map的输出是<LongWritable,Text>,如果使用Combiner后,输出与reducer一致<Text, NullWritable>,
    
              这种输出是不能作为Reducer的输入的,因为输入要求是<LongWritable,Text>*/
    
            //job.setCombinerClass(LogReducer.class);
    
            job.setReducerClass(LogReducer.class);
    
            job.setOutputKeyClass(Text.class);
    
            job.setOutputValueClass(NullWritable.class);
    
            //Hdfs 输出目录删除
    
            FileSystem fs= FileSystem.get(new URI(args[0]),getConf());
    
            Path outPath=new Path(args[1]);
    
            if(fs.exists(outPath)){
    
                fs.delete(outPath,true);
    
            }
    
            return  job.waitForCompletion(true)?0:1;
    
        }
    
        public static void main(String[] args) throws Exception {
    
            int exitCode=ToolRunner.run(new LogParser(),args);
    
            System.exit(exitCode);
    
        }
    
        //使用本地,Hdfs 输出目录应该怎么删除呢
    
        /*private static void delDir(String path){
    
            File f=new File(path);
    
            if(f.exists()){
    
                if(f.isDirectory()){
    
                    String[] items=f.list();
    
                    for( String item : items ){
    
                        File f2=new File(path+"/"+item);
    
                        if(f2.isDirectory()){
    
                            delDir(path+"/"+item);
    
                        }
    
                        else{
    
                            f2.delete();
    
                        }
    
                    }
    
                }
    
                f.delete(); //删除文件或者最后的空目录
    
            }
    
            else{
    
                System.out.println("Output directory does not exist .");
    
            }
    
        }*/
    
    }
  • 相关阅读:
    DDPG
    Actor Critic
    Policy Gradients
    DQN
    Sarsa
    粘滞键
    Codeforces Round #236 (Div. 2) E. Strictly Positive Matrix 强连通
    hdu 1853 Cyclic Tour KM
    hdu 3435 A new Graph Game KM
    hdu 3488 Tour KM
  • 原文地址:https://www.cnblogs.com/leeyuki/p/9584217.html
Copyright © 2020-2023  润新知