• 关于CV、SLAM、机器人导航的碎碎念


    接触SLAM有半年左右,这段时间,我们跟进最新的开源算法,并根据实际情况修改了一些算法源码,实现机器人的slam、路径规划和避障行为。而我也从一个距离门口18条大街的小白顺利入了门。

    之前由于基础薄弱,对计算机视觉、SLAM、机器人导航的一些概念不太明确,导致在选方案和传感器的时候,大方向有点模糊,没能跳出局部看全局,走了一些弯路。随着学习的深入,对一些基础知识也有了相对清晰的概念,最近试着梳理了一下相关的东西,也算是自己总结。

    先祭出一张我自己徒手画的框图:

    1、之前一直认为,机器人导航用的地图就应该是SLAM输出的地图,但在图优化时代,visual slam输出的地图,似乎只是用来追踪摄像机轨迹的。机器人在获得相机pose后,需要借助其他传感器,如激光雷达等,来构建导航端需要的障碍物地图。也就是说,导航用的地图和visual slam输出的地图不用混为一谈。

    2、slam是属于计算机视觉的一个分支,如果要用视觉做一些其他的应用,比如一些视觉交互和识别等,由于视觉计算比较消耗资源,在系统硬件架构上不应该与slam放在一起做,本身也应该是两个不同的研究方向和应用场景。

    3、cv、slam、机器人导航,会有一些交叉,但是本质上是属于不同的研究方向,各自有各自的方法和难点,如果团队想要做得比较深入,应该三部分研究工作由不同的人来承担。我司现在就略为混乱,基本上每个人都涉及到了这三个方向,这样效率会比较低。

     

    以上是我自己梳理的东西,比较基础,有的也是显而易见的东西,若有错误的地方,希望看到的朋友能不吝赐教。越学习越感觉自己的无知,需要学习的东西太多了。

  • 相关阅读:
    关于-webkit-border-image的理解
    手机浏览pc网页,字体显示比样式中设置的字体更大
    网页乱码原理
    浏览器的钉点调试的作用
    zepto中的多点触摸
    parentNode和offsetParent的区别,仅仅只是定位相对不一样么
    ckeckbox的默认样式,label for添加toggle后失效,美化checkbox
    当stop()遇到animate()的回调函数
    有联系的标识变量的变化一定要同步
    当relative遇上z-index,半透明度不阻断事件捕获
  • 原文地址:https://www.cnblogs.com/leefeng/p/5721504.html
Copyright © 2020-2023  润新知