• dubbo负载均衡策略及对应源码分析


    在集群负载均衡时,Dubbo 提供了多种均衡策略,缺省为 random 随机调用。我们还可以扩展自己的负责均衡策略,前提是你已经从一个小白变成了大牛,嘻嘻

    1、Random LoadBalance

             1.1  随机,按权重设置随机概率。

             1.2  在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

             1.3 源码分析

               

    package com.alibaba.dubbo.rpc.cluster.loadbalance;
    
    import java.util.List;
    import java.util.Random;
    
    import com.alibaba.dubbo.common.URL;
    import com.alibaba.dubbo.rpc.Invocation;
    import com.alibaba.dubbo.rpc.Invoker;
    
    /**
     * random load balance.
     *
     * @author qianlei
     * @author william.liangf
     */
    public class RandomLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "random";
    
        private final Random random = new Random();
    
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            int length = invokers.size(); // 总个数
            int totalWeight = 0; // 总权重
            boolean sameWeight = true; // 权重是否都一样
            for (int i = 0; i < length; i++) {
                int weight = getWeight(invokers.get(i), invocation);
                totalWeight += weight; // 累计总权重
                if (sameWeight && i > 0
                        && weight != getWeight(invokers.get(i - 1), invocation)) {
                    sameWeight = false; // 计算所有权重是否一样
                }
            }
            if (totalWeight > 0 && ! sameWeight) {
                // 如果权重不相同且权重大于0则按总权重数随机
                int offset = random.nextInt(totalWeight);
                // 并确定随机值落在哪个片断上
                for (int i = 0; i < length; i++) {
                    offset -= getWeight(invokers.get(i), invocation);
                    if (offset < 0) {
                        return invokers.get(i);
                    }
                }
            }
            // 如果权重相同或权重为0则均等随机
            return invokers.get(random.nextInt(length));
        }
    
    }

           说明:从源码可以看出随机负载均衡的策略分为两种情况

             a. 如果总权重大于0并且权重不相同,就生成一个1~totalWeight(总权重数)的随机数,然后再把随机数和所有的权重值一一相减得到一个新的随机数,直到随机 数小于0,那么此时访问的服务器就是使得随机数小于0的权重所在的机器

             b.  如果权重相同或者总权重数为0,就生成一个1~length(权重的总个数)的随机数,此时所访问的机器就是这个随机数对应的权重所在的机器

    2、RoundRobin LoadBalance

          2.1 轮循,按公约后的权重设置轮循比率。

          2.2 存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

          2.3 源码分析

          

    package com.alibaba.dubbo.rpc.cluster.loadbalance;
    
    import java.util.ArrayList;
    import java.util.List;
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.ConcurrentMap;
    
    import com.alibaba.dubbo.common.URL;
    import com.alibaba.dubbo.common.utils.AtomicPositiveInteger;
    import com.alibaba.dubbo.rpc.Invocation;
    import com.alibaba.dubbo.rpc.Invoker;
    
    /**
     * Round robin load balance.
     *
     * @author qian.lei
     * @author william.liangf
     */
    public class RoundRobinLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "roundrobin"; 
        
        private final ConcurrentMap<String, AtomicPositiveInteger> sequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();
    
        private final ConcurrentMap<String, AtomicPositiveInteger> weightSequences = new ConcurrentHashMap<String, AtomicPositiveInteger>();
    
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
            int length = invokers.size(); // 总个数
            int maxWeight = 0; // 最大权重
            int minWeight = Integer.MAX_VALUE; // 最小权重
            for (int i = 0; i < length; i++) {
                int weight = getWeight(invokers.get(i), invocation);
                maxWeight = Math.max(maxWeight, weight); // 累计最大权重
                minWeight = Math.min(minWeight, weight); // 累计最小权重
            }
            if (maxWeight > 0 && minWeight < maxWeight) { // 权重不一样
                AtomicPositiveInteger weightSequence = weightSequences.get(key);
                if (weightSequence == null) {
                    weightSequences.putIfAbsent(key, new AtomicPositiveInteger());
                    weightSequence = weightSequences.get(key);
                }
                int currentWeight = weightSequence.getAndIncrement() % maxWeight;
                List<Invoker<T>> weightInvokers = new ArrayList<Invoker<T>>();
                for (Invoker<T> invoker : invokers) { // 筛选权重大于当前权重基数的Invoker
                    if (getWeight(invoker, invocation) > currentWeight) {
                        weightInvokers.add(invoker);
                    }
                }
                int weightLength = weightInvokers.size();
                if (weightLength == 1) {
                    return weightInvokers.get(0);
                } else if (weightLength > 1) {
                    invokers = weightInvokers;
                    length = invokers.size();
                }
            }
            AtomicPositiveInteger sequence = sequences.get(key);
            if (sequence == null) {
                sequences.putIfAbsent(key, new AtomicPositiveInteger());
                sequence = sequences.get(key);
            }
            // 取模轮循
            return invokers.get(sequence.getAndIncrement() % length);
        }
    
    }

          说明:从源码可以看出轮循负载均衡的算法是:

                     a.  如果权重不一样时,获取一个当前的权重基数,然后从权重集合中筛选权重大于当前权重基数的集合,如果筛选出的集合的长度为1,此时所访问的机器就是集合里面的权重对应的机器

                     b.  如果权重一样时就取模轮循

    3、LeastActive LoadBalance

            3.1 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差(调用前的时刻减去响应后的时刻的值)。

            3.2 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大

            3.3 对应的源码

           

    package com.alibaba.dubbo.rpc.cluster.loadbalance;
    
    import java.util.List;
    import java.util.Random;
    
    import com.alibaba.dubbo.common.Constants;
    import com.alibaba.dubbo.common.URL;
    import com.alibaba.dubbo.rpc.Invocation;
    import com.alibaba.dubbo.rpc.Invoker;
    import com.alibaba.dubbo.rpc.RpcStatus;
    
    /**
     * LeastActiveLoadBalance
     * 
     * @author william.liangf
     */
    public class LeastActiveLoadBalance extends AbstractLoadBalance {
    
        public static final String NAME = "leastactive";
        
        private final Random random = new Random();
    
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            int length = invokers.size(); // 总个数
            int leastActive = -1; // 最小的活跃数
            int leastCount = 0; // 相同最小活跃数的个数
            int[] leastIndexs = new int[length]; // 相同最小活跃数的下标
            int totalWeight = 0; // 总权重
            int firstWeight = 0; // 第一个权重,用于于计算是否相同
            boolean sameWeight = true; // 是否所有权重相同
            for (int i = 0; i < length; i++) {
                Invoker<T> invoker = invokers.get(i);
                int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); // 活跃数
                int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // 权重
                if (leastActive == -1 || active < leastActive) { // 发现更小的活跃数,重新开始
                    leastActive = active; // 记录最小活跃数
                    leastCount = 1; // 重新统计相同最小活跃数的个数
                    leastIndexs[0] = i; // 重新记录最小活跃数下标
                    totalWeight = weight; // 重新累计总权重
                    firstWeight = weight; // 记录第一个权重
                    sameWeight = true; // 还原权重相同标识
                } else if (active == leastActive) { // 累计相同最小的活跃数
                    leastIndexs[leastCount ++] = i; // 累计相同最小活跃数下标
                    totalWeight += weight; // 累计总权重
                    // 判断所有权重是否一样
                    if (sameWeight && i > 0 
                            && weight != firstWeight) {
                        sameWeight = false;
                    }
                }
            }
            // assert(leastCount > 0)
            if (leastCount == 1) {
                // 如果只有一个最小则直接返回
                return invokers.get(leastIndexs[0]);
            }
            if (! sameWeight && totalWeight > 0) {
                // 如果权重不相同且权重大于0则按总权重数随机
                int offsetWeight = random.nextInt(totalWeight);
                // 并确定随机值落在哪个片断上
                for (int i = 0; i < leastCount; i++) {
                    int leastIndex = leastIndexs[i];
                    offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                    if (offsetWeight <= 0)
                        return invokers.get(leastIndex);
                }
            }
            // 如果权重相同或权重为0则均等随机
            return invokers.get(leastIndexs[random.nextInt(leastCount)]);
        }
    }

        说明:源码里面的注释已经很清晰了,大致的意思就是活跃数越小的的机器分配到的请求越多

     4、ConsistentHash LoadBalance

           4.1 一致性 Hash,相同参数的请求总是发到同一提供者。

           4.2 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。

           4.3 缺省只对第一个参数 Hash,如果要修改,请配置 <dubbo:parameter key="hash.arguments" value="0,1" />

           4.4 缺省用 160 份虚拟节点,如果要修改,请配置 <dubbo:parameter key="hash.nodes" value="320" />

           4.5 源码分析

    /*
     * Copyright 1999-2012 Alibaba Group.
     *  
     * Licensed under the Apache License, Version 2.0 (the "License");
     * you may not use this file except in compliance with the License.
     * You may obtain a copy of the License at
     *  
     *      http://www.apache.org/licenses/LICENSE-2.0
     *  
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    package com.alibaba.dubbo.rpc.cluster.loadbalance;
    
    import java.io.UnsupportedEncodingException;
    import java.security.MessageDigest;
    import java.security.NoSuchAlgorithmException;
    import java.util.List;
    import java.util.SortedMap;
    import java.util.TreeMap;
    import java.util.concurrent.ConcurrentHashMap;
    import java.util.concurrent.ConcurrentMap;
    
    import com.alibaba.dubbo.common.Constants;
    import com.alibaba.dubbo.common.URL;
    import com.alibaba.dubbo.rpc.Invocation;
    import com.alibaba.dubbo.rpc.Invoker;
    
    /**
     * ConsistentHashLoadBalance
     * 
     * @author william.liangf
     */
    public class ConsistentHashLoadBalance extends AbstractLoadBalance {
    
        private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = new ConcurrentHashMap<String, ConsistentHashSelector<?>>();
    
        @SuppressWarnings("unchecked")
        @Override
        protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
            String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
            int identityHashCode = System.identityHashCode(invokers);
            ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
            if (selector == null || selector.getIdentityHashCode() != identityHashCode) {
                selectors.put(key, new ConsistentHashSelector<T>(invokers, invocation.getMethodName(), identityHashCode));
                selector = (ConsistentHashSelector<T>) selectors.get(key);
            }
            return selector.select(invocation);
        }
    
        private static final class ConsistentHashSelector<T> {
    
            private final TreeMap<Long, Invoker<T>> virtualInvokers;
    
            private final int                       replicaNumber;
            
            private final int                       identityHashCode;
            
            private final int[]                     argumentIndex;
    
            public ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
                this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
                this.identityHashCode = System.identityHashCode(invokers);
                URL url = invokers.get(0).getUrl();
                this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
                String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
                argumentIndex = new int[index.length];
                for (int i = 0; i < index.length; i ++) {
                    argumentIndex[i] = Integer.parseInt(index[i]);
                }
                for (Invoker<T> invoker : invokers) {
                    for (int i = 0; i < replicaNumber / 4; i++) {
                        byte[] digest = md5(invoker.getUrl().toFullString() + i);
                        for (int h = 0; h < 4; h++) {
                            long m = hash(digest, h);
                            virtualInvokers.put(m, invoker);
                        }
                    }
                }
            }
    
            public int getIdentityHashCode() {
                return identityHashCode;
            }
    
            public Invoker<T> select(Invocation invocation) {
                String key = toKey(invocation.getArguments());
                byte[] digest = md5(key);
                Invoker<T> invoker = sekectForKey(hash(digest, 0));
                return invoker;
            }
    
            private String toKey(Object[] args) {
                StringBuilder buf = new StringBuilder();
                for (int i : argumentIndex) {
                    if (i >= 0 && i < args.length) {
                        buf.append(args[i]);
                    }
                }
                return buf.toString();
            }
    
            private Invoker<T> sekectForKey(long hash) {
                Invoker<T> invoker;
                Long key = hash;
                if (!virtualInvokers.containsKey(key)) {
                    SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key);
                    if (tailMap.isEmpty()) {
                        key = virtualInvokers.firstKey();
                    } else {
                        key = tailMap.firstKey();
                    }
                }
                invoker = virtualInvokers.get(key);
                return invoker;
            }
    
            private long hash(byte[] digest, int number) {
                return (((long) (digest[3 + number * 4] & 0xFF) << 24)
                        | ((long) (digest[2 + number * 4] & 0xFF) << 16)
                        | ((long) (digest[1 + number * 4] & 0xFF) << 8) 
                        | (digest[0 + number * 4] & 0xFF)) 
                        & 0xFFFFFFFFL;
            }
    
            private byte[] md5(String value) {
                MessageDigest md5;
                try {
                    md5 = MessageDigest.getInstance("MD5");
                } catch (NoSuchAlgorithmException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
                md5.reset();
                byte[] bytes = null;
                try {
                    bytes = value.getBytes("UTF-8");
                } catch (UnsupportedEncodingException e) {
                    throw new IllegalStateException(e.getMessage(), e);
                }
                md5.update(bytes);
                return md5.digest();
            }
    
        }
    
    }

    说明:根据传递的参数进行hash然后调用服务,如果两次传递的参数一样就调用的是同一个机器上的服务

    5、dubbo官方的文档的负载均衡配置示例

        服务端服务级别

       <dubbo:service interface="..." loadbalance="roundrobin" />
    

        客户端服务级别

       <dubbo:reference interface="..." loadbalance="roundrobin" />
    

        服务端方法级别

      <dubbo:service interface="...">
          <dubbo:method name="..." loadbalance="roundrobin"/>
      </dubbo:service>
    

        客户端方法级别

      <dubbo:reference interface="...">
          <dubbo:method name="..." loadbalance="roundrobin"/>
      </dubbo:reference>
  • 相关阅读:
    C++内联函数
    C++类中创建线程
    windows下搭建Redis集群
    tcpdump截帧工具使用
    使用gdb调试应用程序
    工作之用
    primecoin服务常用命令和参数说明
    Windows mysql默认字符集修改
    primecoin在ubuntu16.04上部署服务:
    ubuntu磁盘分配和挂载
  • 原文地址:https://www.cnblogs.com/leeSmall/p/7620467.html
Copyright © 2020-2023  润新知