• 利用java实现数据结构中常用的插入排序和快速排序算法


    在网上看的,挺全的,收了先。。

    第十章 排序

    源程序:

    Data.java

    package Sort;

    class Data {

      Comparable key;

      Object value;

      public Data() {

      }

     

      public Data(Data data){

        this.key=data.key;

        this.value=data.value;

      }

     

      public Data(Comparable key,Object value){

        this.key=key;

        this.value=value;

      }

      public String toString(){

        return "key="+key+";"+"value="+value+";"+"\n";

      }

    }

     

    Insertion.java

    package Sort;

    public class InsertionSort {

      public InsertionSort() {

      }

      //直接插入排序,从下标1开始

      public static void straightInsertionSort(Data[] data) {

        int i, j;

        for (i = 2; i <data.length; i++) {

          if (data[i].key.compareTo(data[i - 1].key) < 0) {

            data[0] = data[i];//复制为监视哨

            for (j = i - 1; data[0].key.compareTo(data[j].key) < 0; --j) {

              data[j + 1] = data[j];//记录右移

            }

            data[j + 1] = data[0];//插入

          }

        }

      }

     

      //折半插入排序,从下标1开始

      public static void BinaryInsertionSort(Data[] data){

        int i,j,low,high,mid;

        for(i=2;i<data.length;i++){

          if (data[i].key.compareTo(data[i - 1].key) < 0) {

            data[0]=data[i];

            //找插入位置

            low=1;high=i-1;

            while(low<=high){

              mid =(low+high)/2;

              if(data[0].key.compareTo(data[mid].key)<0) high=mid-1;

              else low=mid+1;

            }

            //移动插入位置以后的元素

            for(j=i-1;j>=high+1;j--){

              data[j+1]=data[j];

            }

            data[high+1]=data[0];//插入

          }

        }

      }

     

      //表插入排序

      public static void ListInsertionSort(Data[] data){

      int i,j,k;

      //inner class:Table

        class Table{

          Comparable key;

          int next;

        }

        Table[] table=new Table[data.length];

        for(i=1;i<data.length;i++){

          table[i]=new Table();

          table[i].key=data[i].key;

        }

        table[0]=new Table();

        table[0].key=new Integer(Integer.MAX_VALUE);

        table[0].next=1;

        table[1].next=0;

        for(i=2;i<data.length;i++){

          for(j=0,k=table[0].next;table[k].key.compareTo(table[i].key)<=0;j=k,k=table[k].next);

          table[j].next=i;

          table[i].next=k;

        }

        Data[] newData=new Data[data.length];

        int position=table[0].next;

        for(i=1;i<data.length;i++){

          newData[i]=data[position];

          position=table[position].next;

        }

        //data=newData;//不知为什么不能把newData赋给data,而必须用下面的

        for(i=1;i<data.length;i++){

          data[i]=newData[i];

        }

      }

    }

     

    QuickSort.java

    package Sort;

    import Queue.*;

     

    public class QuickSort {

      public QuickSort() {

      }

     

      //起泡排序

      public static void BubbleSort(Data[] data) {

        int i, j, lastChangeIndex;

        Data temp;

        i = data.length - 1;

        while (i > 1) {

          lastChangeIndex = 1;

          for (j = 1; j < i; j++) {

            if (data[j + 1].key.compareTo(data[j].key) < 0) {

              temp = data[j + 1];

              data[j + 1] = data[j];

              data[j] = temp;

              lastChangeIndex = j;

            }

          }

          i = lastChangeIndex;

        }

      }

     

      //快速排序

      public static void QuickSort(Data[] data) {

        QSort(data, 1, data.length - 1);

      }

     

      public static void OptimizeQuickSort(Data[] data){

        OQSort(data,1,data.length-1);

      }

     

      private static void QSort(Data[] data, int s, int t) {

        int pivotLoc;

        if (s < t) {

          pivotLoc = Partition(data, s, t); //data[1...data.length-1]进行一次划分

          QSort(data, s, pivotLoc - 1); //对低子序列进行递归排序

          QSort(data, pivotLoc + 1, t); //对高子序列进行递归排序

        }

      }

      private static void OQSort(Data[] data,int s,int t){

        int pivotLoc;

        if(s<t){

          pivotLoc=RandomPartition(data,s,t);

          QSort(data, s, pivotLoc - 1); //对低子序列进行递归排序

          QSort(data, pivotLoc + 1, t); //对高子序列进行递归排序

        }

      }

     

      private static int RandomPartition(Data[] data,int low,int high){

        //ilow

        int i=(int)Math.random()*(high-low)+low;

        Data temp=data[low];

        data[low]=data[i];

        data[i]=temp;

        return Partition(data,low,high);

      }

     

      private static int Partition(Data[] data, int low, int high) {

        Comparable pivotKey;

        data[0] = data[low];

        pivotKey = data[low].key; //枢轴

        while (low < high) {

          while (low < high && data[high].key.compareTo(pivotKey) >= 0) {

            high--;

          }

          data[low] = data[high];

          while (low < high && data[low].key.compareTo(pivotKey) <= 0) {

            low++;

          }

          data[high] = data[low];

        }

        data[low] = data[0];

        return low;

      }

     

      //堆排序

      public static void HeapSort(Data[] data) {

        //先对顺序表进行堆排序,建立大顶堆

        int i;

        Data temp;

        for (i = (data.length-1)/2; i > 0; i--) {

          HeapAdjust(data, i, data.length-1);

        } //建立大顶堆

     

        for (i = (data.length - 1); i >1; i--) {

          temp = data[1];

          data[1] = data[i];

          data[i] = temp;

          HeapAdjust(data, 1, i - 1);

        }

      }

     

      private static void HeapAdjust(Data[] data, int start, int end) {

        int j;

        Data temp;

        temp = data[start];

        for (j = 2 * start; j <=end; j *=2) {

          if (j < end && data[j].key.compareTo(data[j+1].key) < 0) {

            j++;

          }

          if (temp.key.compareTo(data[j].key) >= 0) {

            break;

          }

          data[start] = data[j];

          start = j;

        }

        data[start] = temp;

      }

     

      //简单选择排序

      public static void SimpleSelectSort(Data[] data) {

        int i, j;

        Data temp;

        for (i = 1; i < data.length; i++) {

          j = MinKey(data, i);

          if (j != i) {

            temp = data[i];

            data[i] = data[j];

            data[j] = temp;

          }

        }

      }

     

      private static int MinKey(Data[] data, int start) {

        int i, j = start;

        Comparable temp;

        temp = data[start].key;

        if (data.length - start == 0) {

          return start;

        }

        for (i = start + 1; i < data.length; i++) {

          if (temp.compareTo(data[i].key) > 0) {

            temp = data[i].key;

            j = i;

          }

        }

        return j;

      }

     

      //归并排序

      private static Data[] originalnewData2;

      private static Data[] newData2;

      public static void MergingSort(Data[] data) {

        originalnewData2 = new Data[data.length];

        newData2 = new Data[data.length];

        for (int i = 1; i < data.length; i++) {

          originalnewData2[i]=new Data();

          newData2[i] = new Data();

        }

        MSort(data, data, 1, data.length - 1);

      }

     

      private static void MSort(Data[] originalData,Data[] data, int start,

                                int end) {

        if (start == end) {

          data[start] = originalData[start];

        }

        else {

          int mid = (start + end) / 2;

          MSort(originalData, newData2, start, mid);

          MSort(originalData, newData2, mid + 1, end);

          //怎样才能像值传递一样使用引用传递,即不改变它的值

          for(int k=start;k<=end;k++) originalnewData2[k]=new Data(newData2[k]);

          merge(originalnewData2, data, start, mid, end);//这里的data好像不再是一开始传入的data,而是递归时的newData2

        }

      }

     

      private static void merge(Data[] newData, Data[] data, int start, int mid,

                                int end) {

        int i, j;

        int k=start;

        for (i = start, j = mid + 1; start <= mid && j <= end; i++) {

          if (newData[start].key.compareTo(newData[j].key) <= 0) {

            data[i] = newData[start++];

          }

          else {

            data[i] = newData[j++];

          }

        }

        if (start <= mid) {

          for (int tempI = start; tempI <= mid; tempI++) {

            data[i++] = newData[tempI];

          }

        }

        if (j <= end) {

          for (int tempJ = j; tempJ <= end; tempJ++) {

            data[i++] = newData[tempJ];

          }

        }

      }

     

      //基数排序

      public static void RadixSort(Data[] data,int digits){

        int d,j,k,factor=1;

        QueueInterface[] queues=new LinkQueue[10];

        for(int i=0;i<10;i++){

          queues[i]=new LinkQueue();

        }

        for(d=1;d<=digits;factor*=10,d++){

          //distribution

          for(j=1;j<data.length;j++){

            queues[(((Integer)data[j].key).intValue()/factor)%10].put(new Data(data[j]));

          }

          //collection

          for(j=0,k=1;j<10;j++){

     

            while(!queues[j].isEmpty()){

              data[k++]=(Data)queues[j].removeHead();

            }

          }

        }

      }

    }

    测试类:

    package Sort;

     

    public class Test {

      public Test() {

      }

      //产生测试数据

      public static Data[] getData(int size){

        Data[] data=new Data[size+1];

        int number;

        for(int i=0;i<data.length;i++){

          number=(int) (Math.random() * size*10);

          data[i] = new Data(new Integer(number),new Integer(number));

        }

        return data;

      }

     

      //复制测试数据

      public static Data[] duplicationData(Data[] data){

        Data[] duplication=new Data[data.length];

        for(int i=1;i<data.length;i++){

          duplication[i]=new Data(data[i]);

        }

        return duplication;

      }

     

      public static void printData(Data[] data){

        for(int i=1;i<data.length;i++)

          System.out.print(data[i].toString());

      }

     

      public static void main(String[] args) {

        long startTime,stopTime,sortingTime;

        Data[] data=getData(6000);

        Data[] data1,data2,data3,data4,data5,data6,data7,data8,data9,data10;

        data1=duplicationData(data);

        data2=duplicationData(data);

        data3=duplicationData(data);

        data4=duplicationData(data);

        data5=duplicationData(data);

        data6=duplicationData(data);

        data7=duplicationData(data);

        data8=duplicationData(data);

        data9=duplicationData(data);

        data10=duplicationData(data);

     

     

        startTime= System.currentTimeMillis();

        Sort.InsertionSort.straightInsertionSort(data1);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Straight Insertion Sort time is "+ sortingTime);

        //System.out.println("Straight Insertion Sort Answer");

        //printData(data1);

     

     

        startTime= System.currentTimeMillis();

        Sort.InsertionSort.BinaryInsertionSort(data2);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Binary Insertion Sort time is "+ sortingTime);

        //System.out.println("Binary Insertion Sort Answer");

        //printData(data2);

     

        startTime= System.currentTimeMillis();

        Sort.InsertionSort.ListInsertionSort(data3);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("List Insertion Sort time is "+ sortingTime);

        //System.out.println("List Insertion Sort Answer");

        //printData(data3);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.BubbleSort(data4);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Bubble Sort time is "+ sortingTime);

        //System.out.println("Bubble Sort Answer");

        //printData(data4);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.QuickSort(data5);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Quick Sort time is "+ sortingTime);

        //System.out.println("Quick Sort Answer");

        //printData(data5);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.SimpleSelectSort(data6);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Select Sort time is "+ sortingTime);

        //System.out.println("Select Sort Answer");

        //printData(data6);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.MergingSort(data7);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Merging Sort time is "+ sortingTime);

        //System.out.println("Merging Sort Answer");

        //printData(data7);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.RadixSort(data8,5);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Radix Sort time is "+ sortingTime);

        //System.out.println("Radix Sort Answer");

        //printData(data8);

     

        startTime= System.currentTimeMillis();

        Sort.QuickSort.HeapSort(data);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        //System.out.println("Heap Sort time is "+ sortingTime);

        //System.out.println("Radix Sort Answer");

        //printData(data9);

       

        startTime= System.currentTimeMillis();

        Sort.QuickSort.OptimizeQuickSort(data10);

        stopTime= System.currentTimeMillis();

        sortingTime=stopTime-startTime;

        System.out.println("Optimize Quick Sort time is "+ sortingTime);

        //System.out.println("Optimize Quick Sort Answer");

        //printData(data10);

      }

    }

    测试结果:

    各种排序的测试数据表:

    100

    500

    1000

    10000

    直接插入排序

    0

    10

    20

    1752

    二分插入排序

    0

    10

    10

    551

    表插入排序

    10

    10

    30

    2153

    起泡排序

    10

    30

    50

    5068

    快排

    0

    0

    10

    20

    简单选择排序

    30

    20

    20

    3535

    归并排序

    0

    0

    60

    190

    基数排序

    20

    20

    110

    140

    堆排序

    0

    0

    0

    10

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    关于快排:

    快速排序的运行时间与划分是否对称有关,最糟的情况是每次划分时一边是一个元素,一边是n-1个,这种情况的时间复杂度是

    在最好的情况是,每次划分的枢轴都是中值,此时的时间复杂度是 ,在一些书上提到快速排序在平均情况下的复杂度也是 ,所以可以提出一个处理恶化的方法,在排序算法的每一步,可以随机选取一个元素关键字作为枢轴,这样总体来说平均划分是对称的。

    可以把取枢轴的算法改一下:

    int RandomizedPartition(DataType[] a , int p , int r){

           int i= Random(p , r);

           Swap(a[i] ,a[p]);

           return Partition(a,p,r);

    }

     

    500

    1000

    10000

    100000

    200000

    普通快排

    10

    10

    40

    501

    1181

    优化快排

    0

    0

    10

    430

    1142

     

    可以看出,优化后的快排明显的提高了排序的速度,但是同时也可以看出,当元素很多时,交换的次数也增多了,使得优化后的排序的优势不很明显了,这是因为被排的数据是随机的。

    下面显示的是这两种快排对有序的处理时间(数据>7000,内存溢出)

     

    100

    500

    1000

    3000

    6000

    普通快排

    10

    10

    80

    250

    991

    优化快排

    0

    40

    20

    160

    731

     

    由此可知,优化快排能缓解恶化。

  • 相关阅读:
    .NET设计模式系列文章[转]
    asp.net MVC+NHibernate项目开发日志
    NHibernate 中关于 unsavedvalue 的问题
    领域驱动设计DDD之读书笔记
    让人郁闷的“DesktopCompatible”
    实战DDD(DomainDriven Design)领域驱动设计
    手机软件开发中的P/Invoke
    如何配置NHibernate的XML配置文件的智能感知(IntelliSense)功能 ?
    转]WinCE中的未公开函数
    Nhibernate+MVC开发日志
  • 原文地址:https://www.cnblogs.com/lee/p/743381.html
Copyright © 2020-2023  润新知