• flink之kafka生产和消费实战-将生产数据存放到mongodb中


    传统要构建一个kafka的生产者和消费者,还是比较费劲的,但是在引入flink插件后,就会变的非常容易;

    我的场景:监听一个topic, 然后消费者将该topic的消息存放到数据库中,展示在前端,然后在测试需要的时候在前端修改消息,然后将消息重新发送出去;因此在生产者和消费者里面加了一个字段test, 来表示是从自己的服务这里发出去的消息,因此不需要消费并入库;

    在测试生产者和消费者的时候,可以先在自己本地起一个kafka,然后本地生产,服务消费,看代码是否ok;  或者在服务生产,本地消费,看代码是否ok

    1. 后端是一个springboot工程,首先需要在pom文件中引入依赖

    
    
    <properties>
    <java.version>1.8</java.version>
    <scala.binary.version>2.11</scala.binary.version>
    </properties>

    <
    dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId> <version>1.7.1</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka_2.11</artifactId> <version>1.7.0</version> </dependency>

    2. 话不多说,直接开始先写生产者

    public void sendKafka(String topic, String server, String message) throws Exception {
            log.info("开始生产");
            JSONObject obj = JSONObject.parseObject(message);
            obj.put("test","test");
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", server);
            DataStreamSource<String> text = env.addSource(new MyNoParalleSource(obj.toString())).setParallelism(1);
            FlinkKafkaProducer<String> producer = new FlinkKafkaProducer(topic, new SimpleStringSchema(), properties);
            text.addSink(producer);
            env.execute("send kafka ok");
        }

    可以看到里面用到了MyNoParalleSource类,其作用是构建一个并行度为1的数据流,来生产数据

    public class MyNoParalleSource implements SourceFunction<String> {
    
        String message;
    
        public MyNoParalleSource(){
    
        }
    
        public MyNoParalleSource(String message) {
            this.message = message;
        }
    
        @Override
        public void run(SourceContext<String> sourceContext) throws Exception {
                sourceContext.collect(this.message);
        }
    
        @Override
        public void cancel() {
    
        }
    }

    此时生产者就写完了,是不是很优秀,超级简单;

    3. 消费者(由于我的目的是将生产者生产的东西在消费者端存入mongdb数据库中,因此会比生产者稍微复杂一点)

    public  void consumeKafka(String topic, String server) throws Exception {
            log.info("开始消费");
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", server);
    
            FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties);
            //从最早开始消费
            consumer.setStartFromLatest();
    
            DataStream<String> stream = env.addSource(consumer);
            DataStream<Tuple4<String, String, String, String>> sourceStreamTra = stream.filter(new FilterFunction<String>() {
                @Override
                public boolean filter(String value) throws Exception {
                    Boolean flag = true;
                    JSONObject obj = JSONObject.parseObject(value);
                    if(obj.containsKey("test")){
                        flag = false;
                    }
                    return StringUtils.isNotBlank(value) && flag;
                }
            }).map(new MapFunction<String, Tuple4<String, String, String, String>>() {
                private static final long serialVersionUID = 1L;
                @Override
                public Tuple4<String, String, String, String> map(String value)
                        throws Exception {
                    JSONObject obj = JSONObject.parseObject(value);
                    String dataBase = null;
                    String table = null;
                    if(obj.containsKey("database")){
                        dataBase = obj.getString("database");
                        table = obj.getString("table");
                    }
                    
                    return new Tuple4<String, String, String, String>(server ,topic, dataBase+"->"+table, obj.toString());
                }
            });
            sourceStreamTra.addSink(new MongoSink());
            env.execute();
        }
    public class MongoSink extends RichSinkFunction<Tuple4<String, String, String, String>> {
        private static final long serialVersionUID = 1L;
        MongoClient mongoClient = null;
    //    MongoCollection mongoCollection = null;
    
        @Override
        public void invoke(Tuple4<String, String, String, String> value) throws Exception {
            KafkaRecord kafkaRecord = new KafkaRecord("", value.f0 , value.f1, value.f2, value.f3, new Date(new Timestamp(System.currentTimeMillis()).getTime()));
    
            if(mongoClient != null){
                mongoClient = MongoDBUtil.getConnect();
                MongoDatabase db = mongoClient.getDatabase("databBase"); // 是自己的数据库
                MongoCollection mongoCollection = db.getCollection("kafkaRecord");
                mongoCollection.insertOne(new Document(CommonMethod.objectToMap(kafkaRecord)));
            }
    
        }
        @Override
        public void open(Configuration parms) throws Exception {
            super.open(parms);
            mongoClient = MongoDBUtil.getConnect();
        }
    
        @Override
        public void close() throws Exception {
            if (mongoClient != null) {
                mongoClient.close();
            }
        }
    }
    import lombok.Data;
    import org.springframework.data.mongodb.core.mapping.Document;
    import org.springframework.data.mongodb.core.mapping.Field;
    
    import java.io.Serializable;
    import java.util.Date;
    
    @Data
    @Document(collection = "kafkaRecord")
    public class KafkaRecord implements Serializable {
        @Field("_id")
        String id;
        // 具体信息
        String msg;
        //topic
        String topic;
    
        String server;
    
        String source;
        //操作时间
        Date time;
    
        public KafkaRecord(){
    
        }
    
        public KafkaRecord(String id, String server, String topic, String source, String msg, Date time){
            this.id = id;
            this.server = server;
            this.msg = msg;
            this.topic = topic;
            this.source = source;
            this.time = time;
        }
    }

    此时消费者也完事了;

    启动后端服务,生产者发送一条消息,消费者则拿到该消息存到数据库中; 

  • 相关阅读:
    Android学习笔记14:Tween Animation动画的实现
    Android学习笔记17:单项选择RadioButton和多项选择CheckBox的使用
    北国的雪
    Android学习笔记11:图像的平移、旋转及缩放
    三极管基本放大电路解析
    51单片机中data,idata,xdata,pdata的区别
    充电开关制作
    慢慢学Linux驱动开发,第五篇,初探设备模型概念
    慢慢学Linxu驱动开发,第二篇:启程,模块机制,Hello World
    H桥电机驱动原理与应用
  • 原文地址:https://www.cnblogs.com/leavescy/p/14310404.html
Copyright © 2020-2023  润新知