Softmax Regression是 Logistic Regression的推广
假设我们有训练集
Logistic Regression:
对于每个特征,标签
Softmax Regression:
对于每个特征,标签
Softmax Regression有一个很特别地性质:过参数化
可以看到参数减去任意的一个值并不影响我们的假设,也就是说有很多歌参数满足我们的假设
为了避免过大参数的影响,
参考练习:
http://deeplearning.stanford.edu/wiki/index.php/Exercise:Softmax_Regression
实验步骤:
0. 初始化参数和常亮
1.载入数据
2.计算代价函数
3.Gradient checking
4.训练
5.测试
%% CS294A/CS294W Softmax Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % softmax exercise. You will need to write the softmax cost function % in softmaxCost.m and the softmax prediction function in softmaxPred.m. % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % (However, you may be required to do so in later exercises) %%====================================================================== %% STEP 0: Initialise constants and parameters % % Here we define and initialise some constants which allow your code % to be used more generally on any arbitrary input. % We also initialise some parameters used for tuning the model. inputSize = 28 * 28; % Size of input vector (MNIST images are 28x28) numClasses = 10; % Number of classes (MNIST images fall into 10 classes) lambda = 1e-4; % Weight decay parameter %%====================================================================== %% STEP 1: Load data % % In this section, we load the input and output data. % For softmax regression on MNIST pixels, % the input data is the images, and % the output data is the labels. % % Change the filenames if you've saved the files under different names % On some platforms, the files might be saved as % train-images.idx3-ubyte / train-labels.idx1-ubyte images = loadMNISTImages('train-images-idx3-ubyte'); labels = loadMNISTLabels('train-labels-idx1-ubyte'); labels(labels==0) = 10; % Remap 0 to 10 inputData = images; % For debugging purposes, you may wish to reduce the size of the input data % in order to speed up gradient checking. % Here, we create synthetic dataset using random data for testing DEBUG = true; % Set DEBUG to true when debugging. if DEBUG inputSize = 8; inputData = randn(8, 100); labels = randi(10, 100, 1); end % Randomly initialise theta theta = 0.005 * randn(numClasses * inputSize, 1); %%====================================================================== %% STEP 2: Implement softmaxCost % % Implement softmaxCost in softmaxCost.m. [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, inputData, labels); %%====================================================================== %% STEP 3: Gradient checking % % As with any learning algorithm, you should always check that your % gradients are correct before learning the parameters. % if DEBUG numGrad = computeNumericalGradient( @(x) softmaxCost(x, numClasses, ... inputSize, lambda, inputData, labels), theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); % Compare numerically computed gradients with those computed analytically diff = norm(numGrad-grad)/norm(numGrad+grad); disp(diff); % The difference should be small. % In our implementation, these values are usually less than 1e-7. % When your gradients are correct, congratulations! end %%====================================================================== %% STEP 4: Learning parameters % % Once you have verified that your gradients are correct, % you can start training your softmax regression code using softmaxTrain % (which uses minFunc). options.maxIter = 100; softmaxModel = softmaxTrain(inputSize, numClasses, lambda, ... inputData, labels, options); % Although we only use 100 iterations here to train a classifier for the % MNIST data set, in practice, training for more iterations is usually % beneficial. %%====================================================================== %% STEP 5: Testing % % You should now test your model against the test images. % To do this, you will first need to write softmaxPredict % (in softmaxPredict.m), which should return predictions % given a softmax model and the input data. images = loadMNISTImages('mnist/t10k-images-idx3-ubyte'); labels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte'); labels(labels==0) = 10; % Remap 0 to 10 inputData = images; % You will have to implement softmaxPredict in softmaxPredict.m [pred] = softmaxPredict(softmaxModel, inputData); acc = mean(labels(:) == pred(:)); fprintf('Accuracy: %0.3f%% ', acc * 100); % Accuracy is the proportion of correctly classified images % After 100 iterations, the results for our implementation were: % % Accuracy: 92.200% % % If your values are too low (accuracy less than 0.91), you should check % your code for errors, and make sure you are training on the % entire data set of 60000 28x28 training images % (unless you modified the loading code, this should be the case)
function [cost, grad] = softmaxCost(theta, numClasses, inputSize, lambda, data, labels) % numClasses - the number of classes % inputSize - the size N of the input vector % lambda - weight decay parameter % data - the N x M input matrix, where each column data(:, i) corresponds to % a single test set % labels - an M x 1 matrix containing the labels corresponding for the input data % % Unroll the parameters from theta theta = reshape(theta, numClasses, inputSize); numCases = size(data, 2); groundTruth = full(sparse(labels, 1:numCases, 1)); cost = 0; thetagrad = zeros(numClasses, inputSize); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost and gradient for softmax regression. % You need to compute thetagrad and cost. % The groundTruth matrix might come in handy. M = bsxfun(@minus, theta*data,max((theta*data),[],1)); M = exp(M); p = bsxfun(@rdivide, M, sum(M)); cost = -1/numCases * groundTruth(:)'*log(p(:)) + lamda/2 * sum(theta(:)).^2; thetagrad = -1/numCases * (groundTruth - p) *data' + lamda*theta; % ------------------------------------------------------------------ % Unroll the gradient matrices into a vector for minFunc grad = [thetagrad(:)]; end
function [softmaxModel] = softmaxTrain(inputSize, numClasses, lambda, inputData, labels, options)%softmaxTrain Train a softmax model with the given parameters on the given%
data. Returns softmaxOptTheta, a vector containing the trained parameters% for the model.%% inputSize: the size of an input vector x^(i)% numClasses: the number of classes % lambda: weight decay parameter% inputData: an N by M matrix containing the input data,
such that% inputData(:, c) is the cth input% labels: M by 1 matrix containing the class labels for the% corresponding inputs. labels(c) is the class label for% the cth input% options (optional): options% options.maxIter: number of iterations to train forif
~exist('options', 'var') options = struct;endif ~isfield(options, 'maxIter') options.maxIter = 400;end% initialize parameterstheta = 0.005 * randn(numClasses * inputSize, 1);% Use minFunc to minimize the functionaddpath minFunc/options.Method = 'lbfgs'; %
Here, we use L-BFGS to optimize our cost % function. Generally, for minFunc to work, you % need a function pointer with two outputs: the % function value and the gradient. In our problem, % softmaxCost.m satisfies this.minFuncOptions.display = 'on';[softmaxOptTheta,
cost] = minFunc( @(p) softmaxCost(p, ... numClasses, inputSize, lambda, ... inputData, labels), ... theta, options);% Fold softmaxOptTheta into a nicer formatsoftmaxModel.optTheta = reshape(softmaxOptTheta, numClasses, inputSize);softmaxModel.inputSize = inputSize;softmaxModel.numClasses
= numClasses; end
版权声明:本文为博主原创文章,未经博主允许不得转载。