• 565. Array Nesting


    565. Array Nesting

    A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.

    Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.

    Example 1:

    Input: A = [5,4,0,3,1,6,2]
    Output: 4
    Explanation: 
    A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.
    
    One of the longest S[K]:
    S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
    

    Note:

    1. N is an integer within the range [1, 20,000].
    2. The elements of A are all distinct.
    3. Each element of A is an integer within the range [0, N-1].
    class Solution {
    public:
        int arrayNesting(vector<int>& a) {
           size_t maxsize=0;
           for(int i=0;i<a.size();++i){
               size_t size=0;
               for(int k=i;a[k]>=0;size++){
                   int ak=a[k];
                   a[k]=-1;
                   k=ak;
               }
               maxsize=max(maxsize,size);
           }
           return maxsize;
        }
        
    };

    python代码

    class Solution(object):
        def arrayNesting(self, nums):
            """
            :type nums: List[int]
            :rtype: int
            """
            max_sz=0
            
            for i in xrange(len(nums)):
                k=i
                sz=0
                while nums[k]>=0:
                    nk=nums[k]
                    nums[k]=-1
                    k=nk
                    sz+=1
                #print "sz: ",sz
                max_sz=max(max_sz,sz)
                #print "nums: ",nums
    
            return max_sz
                    
                
     
     
  • 相关阅读:
    RPC(简单实现)
    观察者模式
    自省(Introspector)
    Mybatis学习笔记
    Nginx
    AJAX跨域
    手写Tomcat
    监听器模式
    回调
    Temporal Segment Networks
  • 原文地址:https://www.cnblogs.com/learning-c/p/9281193.html
Copyright © 2020-2023  润新知