• 外点惩处函数法·约束优化问题


    版权声明:本文为博主原创文章,未经博主同意不得转载,博客主页 http://blog.csdn.net/i_love_home https://blog.csdn.net/zstu_wangrui/article/details/36242529

    外点惩处函数法·约束优化问题

           外点法惩处函数(r添加,SUMT.java)用于求解约束优化问题。解题过程例如以下:

           Step1 输入目标函数与约束方程,构建外点惩处函数法求解方程,求解初始化。

           Step2 对求解方程进行一次无约束优化方法求解(鲍威尔BWE),得到新解。

           Step3 新解与原解求误差。如误差满足精度要求,则输出解,否则添加因子r,运行Step 2。

           鲍威尔法(BWE.java)是N维无约束求解方法。须要调用一维求解方法。一维求解方法採用黄金切割法(GSM.java)。

           在实现算法的代码中,我去掉了输入处理,人为地将输入确定下来。可降低代码篇幅。

           我会将文件打包放入我的下载,欢迎大家一起交流。


    (1)外点法惩处函数 SUMT.java:

    package ODM.Method;
    
    import java.util.Arrays;
    /*
     * 无约束优化方法:惩处函数法·外点法
     */
    public class SUMT {
    
    	private int n = 6;							// 维数,变量个数
    	private final double eps = 1e-5;			// 精度
    	private final double c = 5;				// 递增系数
    	private double r = 0.1;					// 惩处因子,趋向无穷
    	public SUMT(){
    		Finit();
    		AlgorithmProcess();
    		AnswerOutput();
    	}
    	// 结果
    	private double[] xs;						
    	private double ans;
    	private void Finit(){
    		xs = new double[n];
    		Arrays.fill(xs, 0);
    		ans = -1;
    		//xs[0] = xs[1] = xs[2] = xs[4] = 1;	xs[3] = 3;	xs[5] = 5;
    	}
    	// 算法主要流程
    	private void AlgorithmProcess(){
    		int icnt = 0;						// 迭代次数
    		double[] x = new double[n];		// 转化为无约束优化问题的解
    		while(true){
    			icnt++;
    			BWE temp = new BWE(n, r, xs);	// 採用鲍威尔方法求函数最优解
    			x = temp.retAns();
    			if(retOK(x) <= eps){			// 满足精度要求
    				for(int i = 0; i < n; i++)
    					xs[i] = x[i];
    				ans = temp.mAns();
    				break;
    			}
    			r = c * r;
    			for(int i = 0; i < n; i++)
    				xs[i] = x[i];
    		}
    		System.out.println("迭代次数:" + icnt);
    	}
    	// 收敛条件(仅仅有一个,不完好)
    	private double retOK(double[] x){
    		double sum = 0;
    		for(int i = 0; i < n; i++){
    			sum += Math.pow(x[i] - xs[i], 2);
    		}
    		return Math.sqrt(sum);
    	}
    	// 结果输出
    	private void AnswerOutput(){
    		for(int i = 0; i < n; i++)
    			System.out.printf("%.6f	", xs[i]);
    		System.out.printf("%.6f
    ", ans);
    	}
    	
    	
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		new SUMT();
    	}
    
    }
    

    (2)鲍威尔法 BWE.java:

    package ODM.Method;
    
    import java.util.Arrays;
    
    public class BWE {
    
    	private double r;
    	// 初始化变量
    	private double[] x0;						// 初始解集
    	private double[][] e;						// 初始方向
    	private int N;
    	final private double eps = 1e-5;
    	private Func F;
    	
    	// 初始化:初始点, 初始矢量(n 个,n*n 矩阵), 维数
    	private void Init(int n){
    		this.x0 = new double[n];
    		if(r == -1)
    			Arrays.fill(this.x0, 0);
    		else{
    			
    		}
    		
    		this.e = new double[n][n];
    		for(int i = 0; i < n; i++){
    			for(int j = 0; j < n; j++){
    				if(i != j)e[i][j] = 0;
    				else e[i][j] = 1;
    			}
    		}
    		
    		this.N = n;
    		if(r != -1)
    			F = new Func(r);
    		else
    			F = new Func();
    	}
    	
    	
    	// 搜索点, 方向矢量
    	private double[][] x;
    	private double[][] d;
    	
    	// 方向重排, 队列操作
    	private void queueDir(double[] X){
    		// 删去首方向
    		for(int i = 0; i < N-1; i++){
    			for(int j = 0; j < N; j++){
    				d[i][j] = d[i+1][j];
    			}
    		}
    		// 新方向插入队尾
    		for(int i = 0; i < N; i++)
    			d[N-1][i] = X[i];
    	}
    	
    	private void Process(){
    		
    		x = new double[N+1][N];
    		d = new double[N][N];
    
    		for(int j = 0; j < N; j++)
    			x[0][j] = x0[j];
    		for(int i = 0; i < N; i++){
    			for(int j = 0; j < N; j++){
    				d[i][j] = e[i][j];
    			}
    		}
    		
    		int k = 0;							// 迭代次数
    		while(k < N){
    			for(int i = 1; i <= N; i++){
    				GSM t = new GSM(F, x[i-1], d[i-1]);
    				x[i] = t.getOs();
    			}
    			double[] X = new double[N];
    			for(int i = 0; i < N; i++)
    				X[i] = x[N][i] - x[0][i];
    			queueDir(X);
    			GSM t = new GSM(F, x[N], X);
    			x[0] = t.getOs();
    			k++;
    		}
    	}
    	// 答案打印
    	private void AnswerOutput(){
    		for(int i = 0; i < N; i++){
    			System.out.printf("x[%d] = %.6f
    ", i+1, x[0][i]);
    //			System.out.print(x[0][i] + " ");
    		}
    		System.out.printf("最小值:%.6f
    ", F.fGetVal(x[0]));
    //		System.out.println(": " + F.fGetVal(x[0]));
    	}
    	
    	public BWE(int n){
    		this.r = -1;
    		Init(n);
    		Process();
    		AnswerOutput();
    	}
    	
    	public BWE(int n, double r, double[] x){
    		this.r = r;
    		Init(n);
    		for(int i = 0; i < n; i++)
    			x0[i] = x[i];
    		Process();
    	}
    	// 返回结果,解向量和最优值
    	public double[] retAns(){
    		return x[0];
    	}
    	public double mAns(){
    		return F.fGetVal(x[0], 0);
    	}
    	/*
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		new BWE(2);
    	}*/
    
    }
    

    (3)黄金切割 GSM.java:

    package ODM.Method;
    /*
     * 黄金切割法
     */
    public class GSM {
    
    	private int N;																// 维度
    	private final double landa = (Math.sqrt(5)-1)/2;							// 0.618
    	private double[] x1;
    	private double[] x2;
    	private double[] os;
    	private final double eps = 1e-5;											// 解精度
    	private ExtM EM;															// 用于获取外推法结果
    	
    	// 最优值输出
    	public double[] getOs() {
    		return os;
    	}
    	// 函数, 初始点, 方向矢量
    	public GSM(Func Sample, double[] x, double[] e) {
    		//for(int i = 0; i < e.length; i++)System.out.print(e[i] + " ");System.out.println();
    		initial(Sample, x, e);
    		process(Sample);
    		AnswerPrint(Sample);
    	}
    	// 结果打印
    	private void AnswerPrint(Func Sample) {
    		os = new double[N];
    		for(int i = 0; i < N; i++)
    			os[i] = 0.5*(x1[i] + x2[i]);
    		
    //		System.out.println("os = " + os[0] + " " + os[1]);
    //		System.out.println("ans = " + Sample.fGetVal(os));
    		
    	}
    	// 向量范值
    	private double FanZhi(double[] b, double[] a){
    		double sum = 0;
    		for(int i = 0; i < N; i++){
    			if(b[i] - a[i] != 0 && b[i] == 0)return eps*(1e10);
    			if(b[i] == 0)continue;
    			sum += Math.pow((b[i] - a[i]) / b[i], 2);
    		}
    		return Math.pow(sum, 0.5);
    	}
    	// 算法主流程
    	private void process(Func Sample) {
    		double[] xx1 = new double[N];
    		SubArraysCopy(xx1);
    		double yy1 = Sample.fGetVal(xx1);
    		
    		double[] xx2 = new double[N];
    		AddArraysCopy(xx2);
    		double yy2 = Sample.fGetVal(xx2);
    		// 迭代过程
    		while(true){
    			if(yy1 >= yy2){
    				ArraysCopy(xx1, x1);
    				ArraysCopy(xx2, xx1);	yy1 = yy2;
    				AddArraysCopy(xx2);
    				yy2 = Sample.fGetVal(xx2);
    			}else{
    				ArraysCopy(xx2, x2);
    				ArraysCopy(xx1, xx2);	yy2 = yy1;
    				SubArraysCopy(xx1);
    				yy1 = Sample.fGetVal(xx1);
    			}
    			//System.out.println(FanZhi(x2, x1) + " / " + Math.abs((yy2 - yy1)/yy2));
    			if(FanZhi(x2, x1) < eps && Math.abs(yy2 - yy1) < eps)break;
    		}
    	}
    	// 获得外推法结果:左右边界
    	private void initial(Func Sample, double[] x, double[] e) {
    		N = x.length;
    		EM = new ExtM(Sample, x, e);
    		x1 = EM.getX1();
    		x2 = EM.getX3();
    	}
    	// 向量赋值
    	private void ArraysCopy(double[] s, double[] e){
    		for(int i = 0; i < N; i++)
    			e[i] = s[i];
    	}
    		// + landa
    	private void AddArraysCopy(double[] arr){
    		for(int i = 0; i < N; i++)
    			arr[i] = x1[i] + landa*(x2[i] - x1[i]);
    	}
    		// - landa
    	private void SubArraysCopy(double[] arr){
    		for(int i = 0; i < N; i++)
    			arr[i] = x2[i] - landa*(x2[i] - x1[i]);
    	}
    	/*
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		double[] C = {0, 0};
    		double[] d = {1, 0};
    		new GSM(new Func(), C, d);
    	}
    	*/
    }
    


    以上算法文件包括函数方程,黄金切割时有一维搜索的外推法确定“高低高”区间。

    函数方程 Func.java。外推法 ExtM.java。

    Func.java:

    package ODM.Method;
    
    public class Func {
    
    	private int N;								// N 维
    	private double[] left;						// 函数左边界
    	private double[] right;					// 函数右边界
    	private double r;
    	
    	public Func() {
    		r = -1;
    	}
    	public Func(double r) {
    		this.r = r;
    	}
    	
    	// 定义函数与函数值返回
    	public double fGetVal(double[] x){
    		if(r != -1)return fGetVal(x, r);
    		// 10*(x1+x2-5)^2 + (x1-x2)^2
    		return 10*Math.pow(x[0]+x[1]-5, 2) + Math.pow(x[0]-x[1], 2);
    		//
    	}
    	private double max(double a, double b){return a > b ? a : b;}
    	public double fGetVal(double[] x, double r){
    		double ret = 0;
    //		function f1
    //		ret =  Math.pow(x[0]-5, 2) + 4*Math.pow(x[1]-6, 2)
    //				+ r * (
    //				+ Math.pow(max(64-x[0]*x[0]-x[1]*x[1], 0), 2)
    //				+ Math.pow(max(x[1]-x[0]-10, 0),  0)
    //				+ Math.pow(max(x[0]-10, 0), 2)
    //				);
    		
    //		function f2
    //		ret = x[0]*x[0] + x[1]*x[1] + r*(1-x[0]>0 ? 1-x[0] : 0)*(1-x[0]>0 ?

    1-x[0] : 0); // function f3 ret = Math.pow(x[0]-x[3], 2) + Math.pow(x[1]-x[4], 2) + Math.pow(x[2]-x[5], 2) + r * ( + Math.pow(max(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]-5, 0), 2) + Math.pow(max(Math.pow(x[3]-3, 2)+x[4]*x[4]-1, 0), 2) + Math.pow(max(x[5]-8, 0), 2) + Math.pow(max(4-x[5], 0), 2) ); return ret; } }


    ExtM.java:

    package ODM.Method;
    
    /*
     * 外推法确定“高-低-高”区间
     */
    public class ExtM {
    
    	private int N;							// 函数维数
    	private double[] x1;
    	private double[] x2;
    	private double[] x3;
    	private double y1;
    	private double y2;
    	private double y3;
    	private double h;						// 步长
    	private double[] d;					// 方向矢量
    	public double[] getX1() {
    		return x1;
    	}
    	
    	public double[] getX2() {
    		return x2;
    	}
    	
    	public double[] getX3() {
    		return x3;
    	}
    
    	public double getH() {
    		return h;
    	}
    	// 函数, 初始点,方向
    	public ExtM(Func Sample, double[] x, double[] e) {
    		initial(Sample, x, e);
    		process(Sample);
    		AnswerPrint();
    	}
    	// 初始化阶段
    	private void initial(Func Sample, double[] x, double[] e)
    	{
    		N = x.length;
    		x1 = new double[N];
    		x2 = new double[N];
    		x3 = new double[N];
    		h = 0.01;
    		d = new double[N];
    		
    		ArraysCopy(e, 0, d);
    		//for(int i = 0; i < d.length; i++)System.out.print(d[i]);System.out.println();
    		ArraysCopy(x, 0, x1);
    		y1 = Sample.fGetVal(x1);
    		
    		ArraysCopy(x, h, x2);
    		y2 = Sample.fGetVal(x2);
    		
    		
    	}
    	// 循环部分
    	private void process(Func Sample)
    	{
    		if(y2 > y1){
    			h = -h;
    			ArraysCopy(x1, 0, x3);
    			y3 = y1;
    		}else{
    			ArraysCopy(x2, h, x3);	y3 = Sample.fGetVal(x3);
    		}
    		while(y3 < y2){
    			h = 2*h;
    //			System.out.println("h = " + h);
    			ArraysCopy(x2, 0, x1);		y1 = y2;
    			ArraysCopy(x3, 0, x2);		y2 = y3;
    			ArraysCopy(x2, h, x3);		y3 = Sample.fGetVal(x3);
    //			System.out.println("x1 = " + x1[0] + " " + x1[1] + " y1 = " + y1);
    //			System.out.println("x2 = " + x2[0] + " " + x2[1] + " y2 = " + y2);
    //			System.out.println("x3 = " + x3[0] + " " + x3[1] + " y3 = " + y3);
    		}
    		
    	}
    	// 打印算法结果
    	private void AnswerPrint()
    	{
    //		System.out.println("x1 = " + x1[0] + " " + x1[1] + " y1 = " + y1);
    //		System.out.println("x2 = " + x2[0] + " " + x2[1] + " y2 = " + y2);
    //		System.out.println("x3 = " + x3[0] + " " + x3[1] + " y3 = " + y3);
    	}
    	// 向量转移
    	private void ArraysCopy(double[] s, double c, double[] e){
    		for(int i = 0; i < s.length; i++)
    			e[i] = d[i]*c + s[i];
    	}
    	
    	/*
    	public static void main(String[] args) {
    		// TODO Auto-generated method stub
    		// new ExtM();
    	}*/
    
    }
    


  • 相关阅读:
    文本框设置只读,后台可获取
    div 在同一行的 CSS处理
    在标签中添加属性
    (转)如何使用SignalTap II觀察reg與wire值? (SOC) (Verilog) (Quartus II) (SignalTap II)
    (转)如何使用ModelSim對Megafunction或LPM作仿真? (SOC) (MegaCore) (ModelSim)
    (笔记)TSL235新型光感器件强烈推荐使用
    (转)如何增加SignalTap II能觀察的reg與wire數量? (SOC) (Quartus II) (SignalTap II)
    (转) 如何將10進位轉2進位? (C/C++) (C)
    (转)如何使用ModelSim作前仿真與後仿真? (SOC) (Quartus II) (ModelSim)
    (笔记)关于LM3S片内FLASH编程的一点建议
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10761431.html
  • Copyright © 2020-2023  润新知