• 2018上海大都会邀请赛J(数位DP)


    #include<bits/stdc++.h>
    using namespace std;
    int num[20];//按位储存数字
    int mod;
    long long dp[20][110][110];//位数,位数和,位数和对mod取模的余数
    long long dfs(int pos,int he,int yushu,int limit)//通常用三个以上变量dfs,分别用来表示状态,前导零,数字上限,这道题没有前导零,分别表示
    //数字的位数,前面位数和,对于mod的余数
    {
        if(pos==-1)//从最大位向最小位dfs,个位以下在初始化时变成了-1,代表搜索完成
            return (he==mod&&yushu==0);//表示这个数合法,即满足搜索要求
        else if(dp[pos][he][yushu]!=-1&&limit==0)//在没有限制的条件记忆化,这里与下面记录状态是对应
            return dp[pos][he][yushu];
        int up=limit?num[pos]:9;//判断有无数字上界的限制
        long long summ=0;
        for(int i=0;i<=up;i++)//枚举将不同情况的个数增加到summ中
        {
            if(i+he<=mod)
                summ+=dfs(pos-1,i+he,(i+yushu*10)%mod,limit&&i==num[pos]);//数位DP的灵活所在,此时将位数向下移动一位,数字和增加i,前面的余数*10+现在的余数对mod取模
    //最后的limit和i的传递仍待理解
            else
                break;//如果位数和超过了mod,再向下搜索只会更大,剪枝
        }
        if(!limit)
        {
            dp[pos][he][yushu]=summ;//这里对应上面的记忆化,在一定条件下时记录,保证一致性
        }
        return summ;
    }
    long long solve(long long x)
    {
        int cnt=0;
        while(x)
        {
            num[cnt++]=x%10;
            x/=10;
        }
        long long sum=0;
        for(int i=1;i<=cnt*9;i++)
        {
            mod=i;
            memset(dp,-1,sizeof(dp));//实时将取模清空
            sum+=dfs(cnt-1,0,0,1);//cnt比实际位数多1
        }
        return sum;
    }
    int main()
    {
        int t;
        scanf("%d",&t);
        for(int tt=1;tt<=t;tt++)
        {
            long long n;
            scanf("%lld",&n);
            printf("Case %d: %lld ",tt,solve(n));
        }
        return 0;
    }
    //数位DP难在DP,数位的模板仍存在疑问
    附上数位DP模板,DP的步骤需要自己写,数位的套路已有现成
    typedef long long ll;
    int a[20];
    ll dp[20][state];//不同题目状态不同
    ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
    {
        //递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
        if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
        //第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
        if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
        /*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
        int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
        ll ans=0;
        //开始计数
        for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
        {
            if() ...
            else if()...
            ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
            /*这里还算比较灵活,不过做几个题就觉得这里也是套路了
            大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
            去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
            要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
            前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
        }
        //计算完,记录状态
        if(!limit && !lead) dp[pos][state]=ans;
        /*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
        return ans;
    }
    ll solve(ll x)
    {
        int pos=0;
        while(x)//把数位都分解出来
        {
            a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
            x/=10;
        }
        return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
    }
    int main()
    {
        ll le,ri;
        while(~scanf("%lld%lld",&le,&ri))
        {
            //初始化dp数组为-1,这里还有更加优美的优化
            printf("%lld ",solve(ri)-solve(le-1));
        }
    }
    保持热爱 不懈努力 不试试看怎么知道会失败呢(划掉) 世上无难事 只要肯放弃(划掉)
  • 相关阅读:
    min25筛
    ngnix安装
    Sublime Text 添加到右键菜单 带菜单图标
    临界区与竟态条件
    cscope 支持C++项目
    内网信息收集
    域权限维持-Hook PasswordChangeNotify
    域权限维持-SID History
    域权限维持-DSRM
    ZooKeeper
  • 原文地址:https://www.cnblogs.com/ldudxy/p/9428861.html
Copyright © 2020-2023  润新知