• 基于tensorflow的手写数字识别代码


    基于tensorflow的手写数字识别代码

    from keras.utils import to_categorical
    from keras import models, layers, regularizers
    from keras.optimizers import RMSprop
    from keras.datasets import mnist
    (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
    
    
    train_images = train_images.reshape((60000, 28 * 28)).astype("float")
    test_images = test_images.reshape((10000, 28 *28)).astype("float")
    train_labels = to_categorical(train_labels)
    test_labels = to_categorical(test_labels)
    
    network = models.Sequential()
    network.add(layers.Dense(units=128, activation='relu', input_shape=(28*28,),
                             kernel_regularizer=regularizers.l1(0.0001)))
    
    # 百分之1使得神经元丧失性能
    network.add(layers.Dropout(0.001))
    network.add(layers.Dense(units=32, activation='relu', kernel_regularizer=regularizers.l1(0.0001)))
    network.add(layers.Dropout(0.001))
    network.add(layers.Dense(units=10, activation='softmax'))
    
    
    # 查看当前神经网络结构
    print(network.summary())
    
    # 编译步骤
    network.compile(optimizer=RMSprop(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
    
    # 训练网络,使用fit 函数,epochs 表示训练多少回合,batch_size表示每次训练给多大的数据。
    network.fit(train_images, train_labels, epochs=20, batch_size=128, verbose=2)
    
    # 使用测试集来测试性能
    y_pre = network.predict(test_images[:5])
    print(y_pre, test_labels[:5])
    test_loss, text_accuracy = network.evaluate(test_images,test_labels)
    print("test_loss",test_loss,".  ","test_accuracy: ", text_accuracy)
    

    运行结果如下:
    运行结果

    从结果可以看出,有一定程度的过拟合,优化代码可以解决

  • 相关阅读:
    二进制文件
    Python的特殊成员
    中标麒麟Linux7 如何关闭广播消息
    双重循环输出
    输出星期数
    九九乘法表
    打印菱形
    加法表
    求100以内所有偶数和
    猜大小
  • 原文地址:https://www.cnblogs.com/ldragon2000/p/14117289.html
Copyright © 2020-2023  润新知