现在你要从中剪下5张来,要求必须是连着的。
(仅仅连接一个角不算相连)
比如,【图2.jpg】,【图3.jpg】中,粉红色所示部分就是合格的剪取。
请你计算,一共有多少种不同的剪取方法。
请填写表示方案数目的整数。
注意:你提交的应该是一个整数,不要填写任何多余的内容或说明性文字。
不能边标记边判断,比如 2 3 4 5 6的情况,如果边标记边判断,确定了2 3 4之后,确定5,发现5不与其他的相邻,就不会继续往下走到6了。
但是仅仅深搜一边确定周围相邻也是不行的,比如
这样判断周围都是相邻的,但是图并不连通
所以还是要确定之后再判断一次图是否连通
上代码,借鉴的一位博主的想法
public class test { public static int count, t; public static int[][] book = new int[6][6]; public static int[] num = new int[5]; public static int[] x = new int[] { 1, 0, -1, 0 }; public static int[] y = new int[] { 0, 1, 0, -1 }; public static void dfs1(int sx, int sy) { for (int i = 0; i < 4; ++i) { int ex = sx + x[i]; int ey = sy + y[i]; if (ex < 1 || ex > 3 || ey < 1 || ey > 4) continue; if (book[ex][ey] == 1) { ++t; book[ex][ey] = 0; dfs1(ex, ey); } } } public static void dfs(int i, int j) { if (i == 5) { for (int ii = 0; ii < 6; ++ii) { for (int jj = 0; jj < 6; ++jj) { book[ii][jj] = 0; // 避免上一步的残留 } } int sx = 0, sy = 0; for (int k = 0; k < 5; ++k) { sy = num[k] % 4; if (sy == 0) { sy = 4; sx = num[k] / 4; } else { sx = num[k] / 4 + 1; } book[sx][sy] = 1; } t = 1; book[sx][sy] = 0; // 从最后一个点查找,算第一步了 dfs1(sx, sy); // 5个点是否连通,走迷宫 if (t == 5) { ++count; t = 0; } } else { for (; j < 13; ++j) { num[i] = j; dfs(i + 1, j + 1); } } } public static void main(String[] args) { dfs(0, 1); System.out.println(count); } }最后答案是116种
========================================Talk is cheap, show me the code=======================================