• 谈谈NG视频里面单线性回归、多线性回归、逻辑回归等等


      明天第一节课8.55才上,还是把今天看的东西整理一下吧。

      今天主要是看了NG前几章讲的单线性回归、多线性回归、逻辑回归的matlab实现,之前觉得那些东西理解还好,但是写代码好难的样子,但是今天看了大牛的代码发现真的很easy... 但是是很有技巧的用的矩阵去实现。

      比如单线性回归里面的j=0和j=1这两种情况,直接把x转换成x = [ones(m, 1) x] , 第一列全是1了,刚好可以把j=0时x=1代入去运算,这样子梯度 grad = (1/m).* x' * ((x * theta) - y) , theta = theta - alpha .* grad ,外面加个循环就可以求出theta0 和 theta 1 (其实都在theta矩阵里)。

    clear all; close all; clc
    x = load('ex2x.dat'); y = load('ex2y.dat');
    
    m = length(y); % number of training examples
    
    
    % Plot the training data
    figure; % open a new figure window
    plot(x, y, 'o');
    ylabel('Height in meters')
    xlabel('Age in years')
    
    % Gradient descent
    x = [ones(m, 1) x]; % Add a column of ones to x
    theta = zeros(size(x(1,:)))'; % initialize fitting parameters
    MAX_ITR = 1500;
    alpha = 0.07;
    
    for num_iterations = 1:MAX_ITR
        % This is a vectorized version of the 
        % gradient descent update formula
        % It's also fine to use the summation formula from the videos
    
        % Here is the gradient
        %代价函数的导数:刚好把j=0和j=1的情况巧妙的用矩阵的方法归为一个式子
        %grad = 1/m * (h-y) 或 1/m * (h-y)*x
        grad = (1/m).* x' * ((x * theta) - y);
    
        % Here is the actual update
        theta = theta - alpha .* grad;
    
        % Sequential update: The wrong way to do gradient descent
        % grad1 = (1/m).* x(:,1)' * ((x * theta) - y);
        % theta(1) = theta(1) + alpha*grad1;
        % grad2 = (1/m).* x(:,2)' * ((x * theta) - y);
        % theta(2) = theta(2) + alpha*grad2;
    end
    % print theta to screen
    theta
    
    % Plot the linear fit
    hold on; % keep previous plot visible
    plot(x(:,2), x*theta, '-')
    legend('Training data', 'Linear regression')%标出图像中各曲线标志所代表的意义
    hold off % don't overlay any more plots on this figure,指关掉前面的那幅图
    

      

      还有就是牛顿法直接求解参数,一句w=inv(x'*x)*x'*y 就直接求出了theta0 和 theta 1 ,看来还需看看最优化这方面的东西啊。

      

    %%方法一
    x = load('ex2x.dat');
    y = load('ex2y.dat');
    plot(x,y,'*')
    xlabel('height')
    ylabel('age')
    x = [ones(size(x,1),1),x];
    w=inv(x'*x)*x'*y
    hold on
    %plot(x,0.0639*x+0.7502) 
    plot(x(:,2),0.0639*x(:,2)+0.7502)%更正后的代码
    

      后面就是画代价函数的三维图,一个surf函数直接可以画出三维图像。

      可参考:http://huzhyi21.blog.163.com/blog/static/1007396201061052214302/

    % Calculate J matrix
    
    % Grid over which we will calculate J
    theta0_vals = linspace(-3, 3, 100);
    theta1_vals = linspace(-1, 1, 100);
    
    % initialize J_vals to a matrix of 0's
    J_vals = zeros(length(theta0_vals), length(theta1_vals));
    
    for i = 1:length(theta0_vals)
          for j = 1:length(theta1_vals)
          t = [theta0_vals(i); theta1_vals(j)];    
          J_vals(i,j) = (1/2*m) .* (x * t - y)' * (x * t - y);
          %J_vals就是代价函数: 1/2m * (h-y)^2
        end
    end
    
    % Because of the way meshgrids work in the surf command, we need to 
    % transpose J_vals before calling surf, or else the axes will be flipped
    J_vals = J_vals';
    % Surface plot
    figure;
    surf(theta0_vals, theta1_vals, J_vals)
    xlabel('	heta_0'); ylabel('	heta_1');
    

      

  • 相关阅读:
    RocketMq总结(六) -- 顺序消息
    RocketMq总结(五) -- 消息队列负载均衡和再分配
    RocketMq总结(三) -- 消费者启动 MQClientInstance
    归并排序
    CMS垃圾收集器总结
    桶排序
    快速排序
    ThreadLocal的妙用
    NC_41 找最小的k个数
    RocketMq一条消息存储结构
  • 原文地址:https://www.cnblogs.com/lcj1105/p/4922223.html
Copyright © 2020-2023  润新知