题目链接:棘手的操作
网上的题解大部分都是在线用可并堆艹……但是树高严格(log)的可并堆我不会啊……还是离线大法好……
我们可以先把所有的合并操作用并查集给处理好,把得到的森林记录下来。然后,我们对这个森林进行(dfs),就可以得到一个(dfs)序,那么我们把所有点按照(dfs)序重标号,每个联通块就成为了一段区间了。然后就可以直接用线段树维护了。
注意一个细节:在(dfs)的时候对于一个点连出去的所有边,要优先走先连的边,这样才能保证联通块始终是一段区间。
下面贴代码:
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) #define maxn 300010 #define INF 2147483647 using namespace std; typedef long long llg; struct data{ int op,x,y; }s[maxn]; int head[maxn],next[maxn],to[maxn],tt,du[maxn]; int fa[maxn],n,m,a[maxn],le[maxn],ri[maxn],b[maxn]; int maxv[maxn<<2],addv[maxn<<2],L,R,z,_max,_add; char ss[20]; int getint(){ int w=0;bool q=0; char c=getchar(); while((c>'9'||c<'0')&&c!='-') c=getchar(); if(c=='-') c=getchar(),q=1; while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w; } int find(int x){return fa[fa[x]]==fa[x]?fa[x]:fa[x]=find(fa[x]);} void link(int x,int y){du[x]++;to[++tt]=y;next[tt]=head[x];head[x]=tt;} void dfs(int u){ le[u]=++tt; int *d=new int[du[u]]; for(int i=head[u],j=0;i;i=next[i]) d[j++]=to[i]; for(int i=du[u];i;i--) dfs(d[i-1]); } void build(int u,int l,int r){ int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1; if(l==r){maxv[u]=b[l];return;} build(lc,l,mid); build(lv,mid+1,r); maxv[u]=max(maxv[lc],maxv[lv]); } void add(int u,int l,int r){ int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1; if(l>=L && r<=R){maxv[u]+=z,addv[u]+=z;return;} if(L<=mid) add(lc,l,mid); if(R>mid) add(lv,mid+1,r); maxv[u]=max(maxv[lc],maxv[lv])+addv[u]; } void query(int u,int l,int r){ int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1; if(l>=L && r<=R){_max=max(_max,maxv[u]+_add);return;} _add+=addv[u]; if(L<=mid) query(lc,l,mid); if(R>mid) query(lv,mid+1,r); _add-=addv[u]; } void work(){ _max=-INF; query(1,1,n); printf("%d ",_max); } int main(){ File("a"); n=getint(); for(int i=1;i<=n;i++) a[i]=getint(),fa[i]=i; m=getint(); for(int i=1,u,v;i<=m;i++){ scanf("%s",ss); if(!ss[1]) ss[1]='1'; s[i].op=(ss[0]=='A')+(ss[0]=='F')*4+ss[1]-'0'; if(s[i].op<7) s[i].x=getint(); if(s[i].op<4) s[i].y=getint(); if(s[i].op==1){ u=find(s[i].x),v=find(s[i].y); if(u!=v) fa[u]=v,link(v,u); } } tt=0; for(int i=1;i<=n;i++) if(find(i)==i) dfs(i); for(int i=1;i<=n;i++) b[le[i]]=a[i],ri[i]=le[i]; for(int i=1;i<=n;i++) fa[i]=i; build(1,1,n); for(int i=1,u,v;i<=m;i++){ u=s[i].x; z=v=s[i].y; if(s[i].op==1){ u=find(u),v=find(v); if(u!=v) fa[u]=v,ri[v]=ri[u]; } else if(s[i].op==2) L=R=le[u],add(1,1,n); else if(s[i].op==3) u=find(u),L=le[u],R=ri[u],add(1,1,n); else if(s[i].op==4) z=u,L=1,R=n,add(1,1,n); else if(s[i].op==5) L=R=le[u],work(); else if(s[i].op==6) u=find(u),L=le[u],R=ri[u],work(); else printf("%d ",maxv[1]); } return 0; }
UPD 3.2:左偏树做法
其实无须树高严格(log),左偏树就够了
网上有的题解是每次用(O(树高))的时间统计影响这个点的所有标记,可并堆用的是左偏树= =
但是这样复杂度是不对的,因为左偏树的树高可以达到(O(n))级别
然后就需要考虑一种别的解法
既然不能每次暴力统计到根的所有标记,我们可以考虑把标记永久化了,固定在根节点,这样每次就只需要查询根节点的标记就可以了。但是这样的话合并的时候会出问题,两个堆无法直接合并。不要慌,我们只需要把(size)较小的那个堆里面所有的元素暴力修改掉就可以直接合并了。再用个全局的堆维护一下全局最大值。总复杂度(O(nlog n))。
顺便Orz告诉我此解法的xlightgod大爷Orz
PS:我写的是斜堆,不是左偏树
下面贴代码:
#include<bits/stdc++.h> #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) #define maxn 300010 using namespace std; typedef long long llg; struct Queue{ priority_queue<int> q1,q2; void insert(int x){q1.push(x);} void erase(int x){q2.push(x);} int top(){ while(!q2.empty() && q1.top()==q2.top()) q1.pop(),q2.pop(); return q1.top(); } }q; int n,rt[maxn],siz[maxn],fa[maxn],addv[maxn]; int ff[maxn],s[maxn][2],val[maxn],m,z,_add; char ss[20]; int getint(){ int w=0;bool q=0; char c=getchar(); while((c>'9'||c<'0')&&c!='-') c=getchar(); if(c=='-') c=getchar(),q=1; while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w; } int find(int x){return ff[ff[x]]==ff[x]?ff[x]:ff[x]=find(ff[x]);} int merge(int u,int v){ if(!u || !v) return u+v; if(val[u]<val[v]) swap(u,v); fa[s[u][1]=merge(s[u][1],v)]=u; swap(s[u][0],s[u][1]); return u; } void del(int u){ int x=find(u),y=fa[u]; if(rt[x]==u) fa[rt[x]=merge(s[u][0],s[u][1])]=0; else fa[s[y][u==s[y][1]]=merge(s[u][0],s[u][1])]=y; } void dfs(int u){ val[u]+=z; if(s[u][0]) dfs(s[u][0]); if(s[u][1]) dfs(s[u][1]); } int main(){ File("a"); n=getint(); for(int i=1;i<=n;i++){ ff[i]=rt[i]=i,siz[i]=1; q.insert(val[i]=getint()); } m=getint(); while(m--){ int x,y,u; scanf("%s",ss+1); if(ss[1]=='U'){ x=find(getint()),y=find(getint()); if(siz[x]>siz[y]) swap(x,y); if(x!=y){ q.erase(min(val[rt[x]]+addv[x],val[rt[y]]+addv[y])); z=addv[x]-addv[y],dfs(rt[x]); siz[y]+=siz[x]; ff[x]=y; rt[y]=merge(rt[x],rt[y]); } } else if(ss[1]=='A'){ x=getint(); if(ss[2]=='1' || ss[2]=='2'){ u=find(x); y=getint(); q.erase(val[rt[u]]+addv[u]); if(ss[2]=='1'){ del(x); val[x]+=y; s[x][0]=s[x][1]=fa[x]=0; rt[u]=merge(rt[u],x); } else addv[u]+=y; q.insert(val[rt[u]]+addv[u]); } else if(ss[2]=='3') _add+=x; } else{ if(ss[2]=='3') printf("%d ",q.top()+_add); else{ x=getint(); u=find(x); if(ss[2]=='1') printf("%d ",val[x]+addv[u]+_add); else if(ss[2]=='2') printf("%d ",val[rt[u]]+addv[u]+_add); } } } return 0; }