• BZOJ 2957 楼房重建


    Description

      小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
      为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
      施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?

    Input

      第一行两个正整数N,M
      接下来M行,每行两个正整数Xi,Yi

     

    Output

      M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋

    HINT

      对于所有的数据1<=Xi<=N,1<=Yi<=10^9,N,M<=100000

      很久以前的考试题……当时没有写出来,今天才想起来补上来……

      首先这道题就是要求维护一个序列,支持单点修改和从$1$开始的单增序列长度。

      当时我在想区间问题一般要用线段树,觉得这道题要想update就得把区间中单增的元素给全部存下来。然后这样复杂度就不对了TAT……

      其实这道题根本没有必要把区间的单增元素给全部存下来,只需要存最大值就够了,也就是单增序列的最后一个。但是这样如何update呢?首先显然左半区间的单增序列是肯定要计入答案的。然后我们就可以记录下左半区间的最大值$x$,从右半区间开始往下二分一下,每次判断左半部分的最大值是否大于等于$x$,如果是的话就把当前区间右半部分的答案给加进来,然后往左走;否则就直接往右走。

      说了这么多有点晕……如果还是不懂就看代码吧,代码很短。

      下面贴代码:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cmath>
    #define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
    #define maxn 100010
    
    using namespace std;
    typedef long double llg;
    
    int n,m,siz[maxn<<2],L,z;
    llg maxv[maxn<<2];
    
    int getint(){
    	int w=0;bool q=0;
    	char c=getchar();
    	while((c>'9'||c<'0')&&c!='-') c=getchar();
    	if(c=='-') c=getchar(),q=1;
    	while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
    	return q?-w:w;
    }
    
    void update(int u,int l,int r){
    	int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1,nn=lv;
    	maxv[u]=max(maxv[lc],maxv[lv]);
    	siz[u]=siz[lc]; l=mid+1;
    	if(maxv[lv]>maxv[lc]){
    		while(l!=r){
    			mid=(l+r)>>1;
    			if(maxv[nn<<1]>=maxv[lc]) siz[u]+=siz[nn]-siz[nn<<1],nn<<=1,r=mid;
    			else nn=nn<<1|1,l=mid+1;
    		}
    		if(maxv[nn]>maxv[lc]) siz[u]++;
    	}
    }
    
    void add(int u,int l,int r){
    	int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
    	if(l==r){siz[u]=1;maxv[u]=(llg)z/(llg)l;return;}
    	if(L<=mid) add(lc,l,mid);
    	else add(lv,mid+1,r);
    	update(u,l,r);
    }
    
    int main(){
    	File("a");
    	n=getint(); m=getint();
    	while(m--){
    		L=getint(); z=getint();
    		add(1,1,n);
    		printf("%d
    ",siz[1]);
    	}
    	return 0;
    }
  • 相关阅读:
    在小米 三星 索尼 手机 :图标上显示数字
    HDU 1873 看病要排队
    简单的WINFORM窗口,体验WINFORM带来的快感
    java初探秘之推断输入的一串字符是否全为小写字母
    【Android 面试基础知识点整理】
    互联网+时代IT管理者的转型
    hdu 1233 还是畅通project (克鲁斯卡尔裸题)
    经验之谈—让你看明确block
    字典树
    设计模式之问题集锦(一)
  • 原文地址:https://www.cnblogs.com/lcf-2000/p/6059574.html
Copyright © 2020-2023  润新知