A string s of length n can be encrypted by the following algorithm:
- iterate over all divisors of n in decreasing order (i.e. from n to 1),
- for each divisor d, reverse the substring s[1…d] (i.e. the substring which starts at position 1 and ends at position d).
For example, the above algorithm applied to the string s="codeforces" leads to the following changes: "codeforces" → "secrofedoc" → "orcesfedoc" → "rocesfedoc" →"rocesfedoc" (obviously, the last reverse operation doesn't change the string because d=1).
You are given the encrypted string t. Your task is to decrypt this string, i.e., to find a string s such that the above algorithm results in string t. It can be proven that this string s always exists and is unique.
InputThe first line of input consists of a single integer n (1≤n≤100 ) — the length of the string t. The second line of input consists of the string t. The length of tis n, and it consists only of lowercase Latin letters.
OutputPrint a string s such that the above algorithm results in t.
Examples10 rocesfedoc
codeforces
16 plmaetwoxesisiht
thisisexampletwo
1 z
z
The first example is described in the problem statement.
题目的意思就是例子里面写的那样,已知这个字符串的长度为n,如果一个数d为它的因子,那么从1到d都要逆序(字符串从1开始计数),将所有的因子求出,依次进行逆序就可以了,但是要注意的是,这里是从最小的因子开始逆序。
#include <bits/stdc++.h>
using namespace std;
char s[105];
int main()
{
int n;
while(~scanf("%d",&n))
{
getchar();
scanf("%s",s);
for(int i = 1; i < n ; i ++)
{
if(n % i == 0)
{
for(int j = 0; j < i / 2; j ++)
{
char op = s[j];
s[j] = s[i - j - 1];
s[i-j -1 ] = op;
}
}
}
for(int i = 0; i <=(n -1)/2; i ++)
{
char op = s[i];
s[i] = s[n - i - 1];
s[n - i - 1] = op;
}
printf("%s",s);
printf("
");
}
return 0;
}