题解:根据题目给的程序,就是计算给的这个序列,进行k次到n的循环,每个数需要加的次数是k*n^(k-1),所以快速幂取模,算计一下就可以了。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f3f;
long long pow_mod(ll a, ll k, ll mod)
{
ll ans = 1;
while(k)
{
if(k%2)
ans *= a;
ans %= mod;
a = a * a;
a %= mod;
k /=2;
}
return ans;
}
int main()
{
int T;
ll n,k,mod,x,sum;
while(~scanf("%d",&T))
{
int cas = 1;
while(T--)
{
sum = 0;
scanf("%lld%lld%lld",&n,&k,&mod);
for(ll i = 0; i < n; i ++)
{
scanf("%lld",&x);
sum += (x * (k * pow_mod(n,k-1,mod)%mod)%mod);
sum %= mod;
}
printf("Case %d: %lld
",cas++, sum);
}
}
return 0;
}
Problem:
If you think codes, eat codes then sometimes you may get stressed. In your dreams you may see huge codes, as I have seen once. Here is the code I saw in my dream.
#include <stdio.h>
int cases, caseno;
int n, K, MOD;
int A[1001];
int main() {
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d", &n, &K, &MOD);
int i, i1, i2, i3, ... , iK;
for( i = 0; i < n; i++ ) scanf("%d", &A[i]);
int res = 0;
for( i1 = 0; i1 < n; i1++ ) {
for( i2 = 0; i2 < n; i2++ ) {
for( i3 = 0; i3 < n; i3++ ) {
...
for( iK = 0; iK < n; iK++ ) {
res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD;
}
...
}
}
}
printf("Case %d: %d ", ++caseno, res);
}
return 0;
}Actually the code was about: 'You are given three integers n, K, MOD and n integers: A0, A1, A2 ... An-1, you have to write K nested loops and calculate the summation of all Ai where i is the value of any nested loop variable.'
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with three integers: n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000). The next line contains n non-negative integers denoting A0, A1, A2 ... An-1. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case, print the case number and result of the code.
Sample Input
2
3 1 35000
1 2 3
2 3 35000
1 2
Sample Output
Case 1: 6
Case 2: 36