• HDU 4925 Apple Tree



    Problem Description
    I’ve bought an orchard and decide to plant some apple trees on it. The orchard seems like an N * M two-dimensional map. In each grid, I can either plant an apple tree to get one apple or fertilize the soil to speed up its neighbors’ production. When a grid is fertilized, the grid itself doesn’t produce apples but the number of apples of its four neighbor trees will double (if it exists). For example, an apple tree locates on (x, y), and (x - 1, y), (x, y - 1) are fertilized while (x + 1, y), (x, y + 1) are not, then I can get four apples from (x, y). Now, I am wondering how many apples I can get at most in the whole orchard?


     

    Input
    The input contains multiple test cases. The number of test cases T (T<=100) occurs in the first line of input.
    For each test case, two integers N, M (1<=N, M<=100) are given in a line, which denote the size of the map.
     

    Output
    For each test case, you should output the maximum number of apples I can obtain.
     

    Sample Input
    2 2 2 3 3
     

    Sample Output
    8 32 题意:一个各自要么能种一个苹果数,要么能够施肥,施肥的话,会使得它的上下左右苹果树都加倍,求最多的可能 思路:依次施肥种树计算
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    const int maxn = 110;
    
    int map[maxn][maxn];
    int n, m;
    
    int cal(int i, int j) {
        int ans = 1;
        if (map[i][j+1] == 0)
            ans <<= 1;
        if (map[i+1][j] == 0)
            ans <<= 1;
        if (map[i-1][j] == 0)
            ans <<= 1;
        if (map[i][j-1] == 0)
            ans <<= 1;
        return ans;
    }
    
    int main() {
        int t;
        scanf("%d", &t);
        while (t--) {
            scanf("%d%d", &n, &m);
            memset(map, -1, sizeof(map));
            int flag = 0;
            for (int i = 1; i <= m; i++) {
                map[1][i] = flag;
                flag = !flag;
            }
            for (int i = 2; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    map[i][j] = !map[i-1][j];
            int ans = 0;
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++) 
                    if (map[i][j])
                        ans += cal(i, j);    
    
            memset(map, -1, sizeof(map));
            flag = 1;
            for (int i = 1; i <= m; i++) {
                    map[1][i] = flag;
                    flag = !flag;
                }
            for (int i = 2; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    map[i][j] = !map[i-1][j];
            int tmp = 0;
            for (int i = 1; i <= n; i++)
                for (int j = 1; j <= m; j++)
                    if (map[i][j])
                        tmp += cal(i, j);
            printf("%d
    ", max(ans, tmp));
        }
        return 0;
    }


    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    分词器下载地址
    solr 查询方式
    solr 到 lucene
    Solr 安装与使用 Centos7
    线性表-串:KMP模式匹配算法
    金山——弱智的翻译程序
    FL2440移植Linux2.6.33.7内核
    FL2440移植u-boot2011.09
    【转】C/C++除法实现方式及负数取模详解
    循环缓冲类
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4906897.html
Copyright © 2020-2023  润新知