• Service Manager流程,派BC_REPLY,唤醒FregServer流程,返回BR_TRANSACTION_COMPLETE,睡眠等待proc->wait


    本文參考《Android系统源代码情景分析》,作者罗升阳

    一、service manager代码:

           ~/Android/frameworks/base/cmd/servicemanager
           ----binder.c
           ----service_manager.c
           ----binder.h


            驱动层代码:

           ~/Android//kernel/goldfish/drivers/staging/android

           ----binder.c

           ----binder.h


    二、源代码分析

           从Android Binder进程间通信---Service Manager进程。处理BC_TRANSACTION,返回BR_TRANSACTIONhttp://blog.csdn.net/jltxgcy/article/details/26151113,我们已经知道Service Manager成功地将一个Service组件注冊到内部的Service组件列表所svclist中之后,接着就会调用函数binder_send_reply将Service组件注冊结果返回给Binder驱动程序,Binder驱动程序再将该结果返回给请求注冊Service组件的进程。

          ~/Android/frameworks/base/cmd/servicemanager

           ----binder.c

    void binder_send_reply(struct binder_state *bs,
                           struct binder_io *reply,
                           void *buffer_to_free,
                           int status)  //status为0。注冊成功代码0写入binder_io结构体reply中
    {
        struct {
            uint32_t cmd_free;
            void *buffer;
            uint32_t cmd_reply;
            struct binder_txn txn;
        } __attribute__((packed)) data;
    
        data.cmd_free = BC_FREE_BUFFER;//BC_FREE_BUFFER后面跟的通信数据是一个内核缓冲区的用户空间地址
        data.buffer = buffer_to_free;//一个用户空间地址,指向一块用来传输进程间通信数据的内核缓冲区
        data.cmd_reply = BC_REPLY;//BC_REPLY后面跟的通信数据是一个binder_transaction_data结构体。即一个binder_txn结构体
        data.txn.target = 0;
        data.txn.cookie = 0;
        data.txn.code = 0;
        if (status) {//status为0
            data.txn.flags = TF_STATUS_CODE;
            data.txn.data_size = sizeof(int);
            data.txn.offs_size = 0;
            data.txn.data = &status;
            data.txn.offs = 0;
        } else {
            data.txn.flags = 0;
            data.txn.data_size = reply->data - reply->data0;//0的大小,由于做为do_add_service成功,reply结构体放入0
            data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);//0
            data.txn.data = reply->data0;//指向了0
            data.txn.offs = reply->offs0;//无
        }
        binder_write(bs, &data, sizeof(data));
    }
           首先定义了一个匿名结构体data,用来描写叙述一个BC_FREE_BUFFER和一个BC_REPLY命令协议。分别用成员变量cmd_free和cmd_reply来表示。命令协议BC_FREE_BUFFER后面跟的通信数据是一个内核缓冲区的用户空间地址,它就保存在成员变量buffer中;而命令协议BC_REPLY后面跟的通信数据是一个binder_transaction_data结构体,即一个binder_txn结构体。它就保存在成员变量txn中。

           然后调用binder_write将匿名结构体data中BC_FREE_BUFFER和BC_REPLY命令协议发送给Binder驱动程序。

    实现例如以下:

          ~/Android/frameworks/base/cmd/servicemanager

           ----binder.c

    int binder_write(struct binder_state *bs, void *data, unsigned len)
    {
        struct binder_write_read bwr;
        int res;
        bwr.write_size = len;
        bwr.write_consumed = 0;
        bwr.write_buffer = (unsigned) data;//匿名结构体data指针
        bwr.read_size = 0;
        bwr.read_consumed = 0;
        bwr.read_buffer = 0;
        res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
        if (res < 0) {
            fprintf(stderr,"binder_write: ioctl failed (%s)
    ",
                    strerror(errno));
        }
        return res;
    }
          函数binder_write是通过IO控制命令BINDER_WRITE_READ来将BC_FREE_BUFFER和BC_REPLY命令协议发送给Binder驱动程序的,映射到驱动程序binder_thread_write。


           ~/Android//kernel/goldfish/drivers/staging/android

           ----binder.c

    int
    binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,
    		    void __user *buffer, int size, signed long *consumed)
    {
    	uint32_t cmd;
    	void __user *ptr = buffer + *consumed;
    	void __user *end = buffer + size;
    
    	while (ptr < end && thread->return_error == BR_OK) {
    		if (get_user(cmd, (uint32_t __user *)ptr))
    			return -EFAULT;
    		ptr += sizeof(uint32_t);
                    ......
    		case BC_TRANSACTION:
    		case BC_REPLY: {
    			struct binder_transaction_data tr;
    
    			if (copy_from_user(&tr, ptr, sizeof(tr)))//上面刚提到的binder_txn结构体data.txn
    				return -EFAULT;
    			ptr += sizeof(tr);
    			binder_transaction(proc, thread, &tr, cmd == BC_REPLY);//tr为上面已经赋值的data.txn
    			break;
    		}
                    ........
    		default:
    			printk(KERN_ERR "binder: %d:%d unknown command %d
    ", proc->pid, thread->pid, cmd);
    			return -EINVAL;
    		}
    		*consumed = ptr - buffer;
    	}
    	return 0;
    }
          我们临时不分析BC_FREE_BUFFER命令,仅仅分析BC_REPLY,while第二次循环会运行到这里。
          tr就是上面已经赋值的data.txn。然后调用binder_transaction函数。实现例如以下:

          ~/Android//kernel/goldfish/drivers/staging/android

          ----binder.c

    static void
    binder_transaction(struct binder_proc *proc, struct binder_thread *thread,
    	struct binder_transaction_data *tr, int reply)
    {
    	struct binder_transaction *t;
    	struct binder_work *tcomplete;
    	......
    	struct binder_proc *target_proc;
    	struct binder_thread *target_thread = NULL;
    	struct binder_node *target_node = NULL;
    	struct list_head *target_list;
    	wait_queue_head_t *target_wait;
    	struct binder_transaction *in_reply_to = NULL;
    	........
    	uint32_t return_error;
    
    	........
    
    	if (reply) {
    		in_reply_to = thread->transaction_stack;//首先从线程thread的事务堆栈中将该binder_transaction结构体取出来,而且保存在变量in_reply_to中
    		if (in_reply_to == NULL) {
    			......
    			return_error = BR_FAILED_REPLY;
    			goto err_empty_call_stack;
    		}
    		binder_set_nice(in_reply_to->saved_priority);
    		if (in_reply_to->to_thread != thread) {//在上节中刚设置的
    			........
    			return_error = BR_FAILED_REPLY;
    			in_reply_to = NULL;
    			goto err_bad_call_stack;
    		}
    		thread->transaction_stack = in_reply_to->to_parent;//Server Manager进程的主线程transaction_stack为NULL
    		target_thread = in_reply_to->from;//找到目标线程
    		if (target_thread == NULL) {
    			return_error = BR_DEAD_REPLY;
    			goto err_dead_binder;
    		}
    		if (target_thread->transaction_stack != in_reply_to) {//FregServer进程的主线程的transation_stack就是这个in_reply_to
    			.........
    			return_error = BR_FAILED_REPLY;
    			in_reply_to = NULL;
    			target_thread = NULL;
    			goto err_dead_binder;
    		}
    		target_proc = target_thread->proc;//找到了目标进程
    	} else {
    		........
    	}
    	if (target_thread) {
    		.........
    		target_list = &target_thread->todo;//分别将它的todo队列和wait等待队列作为目标todo队列target_list和目标wait等待队列target_wait
    		target_wait = &target_thread->wait;//分别将它的todo队列和wait等待队列作为目标todo队列target_list和目标wait等待队列target_wait
    	} else {
    		.........
    	}
    	.........
    
    	/* TODO: reuse incoming transaction for reply */
    	t = kzalloc(sizeof(*t), GFP_KERNEL);//分配了binder_transaction结构体
    	........
    
    	tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);//分配了binder_work结构体
    	if (tcomplete == NULL) {
    		return_error = BR_FAILED_REPLY;
    		goto err_alloc_tcomplete_failed;
    	}
    	.......
    
    	if (!reply && !(tr->flags & TF_ONE_WAY))
    		t->from = thread;//service_manager的主线程
    	else
    		t->from = NULL;
    	t->sender_euid = proc->tsk->cred->euid;//service_manager进程号
    	t->to_proc = target_proc;//目标进程
    	t->to_thread = target_thread;//目标线程
    	t->code = tr->code;//0
    	t->flags = tr->flags;//0
    	t->priority = task_nice(current);
    	t->buffer = binder_alloc_buf(target_proc, tr->data_size,
    		tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));//分配了binder_buffer结构体
    	if (t->buffer == NULL) {
    		return_error = BR_FAILED_REPLY;
    		goto err_binder_alloc_buf_failed;
    	}
    	t->buffer->allow_user_free = 0;//不同意释放
    	.......
    	t->buffer->transaction = t;
    	t->buffer->target_node = target_node;//NULL
    	if (target_node)
    		binder_inc_node(target_node, 1, 0, NULL);//增加目标Binder实体对象的强引用计数
    
    	offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));//偏移数组在data中起始位置,位于数据缓冲区之后
    
    	if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {//数据缓冲区复制到data中
    		binder_user_error("binder: %d:%d got transaction with invalid "
    			"data ptr
    ", proc->pid, thread->pid);
    		return_error = BR_FAILED_REPLY;
    		goto err_copy_data_failed;
    	}
    	if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {//偏移数组复制到data中,偏移数组位于数据缓冲区之后
    		binder_user_error("binder: %d:%d got transaction with invalid "
    			"offsets ptr
    ", proc->pid, thread->pid);
    		return_error = BR_FAILED_REPLY;
    		goto err_copy_data_failed;
    	}
    	if (!IS_ALIGNED(tr->offsets_size, sizeof(size_t))) {
    		binder_user_error("binder: %d:%d got transaction with "
    			"invalid offsets size, %zd
    ",
    			proc->pid, thread->pid, tr->offsets_size);
    		return_error = BR_FAILED_REPLY;
    		goto err_bad_offset;
    	}
    	off_end = (void *)offp + tr->offsets_size;
    	for (; offp < off_end; offp++) {//偏移数组里面没有内容
    		.....
    	}
    	if (reply) {
    		BUG_ON(t->buffer->async_transaction != 0);
    		binder_pop_transaction(target_thread, in_reply_to);//FregServer进程的主线程thread->transaction_stack为NULL
    	} else if (!(t->flags & TF_ONE_WAY)) {
    		.........
    	} else {
    		.........
    	}
    	t->work.type = BINDER_WORK_TRANSACTION;
    	list_add_tail(&t->work.entry, target_list);//增加到目标线程的todo
    	tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;
    	list_add_tail(&tcomplete->entry, &thread->todo);//增加到本线程的todo
    	if (target_wait)
    		wake_up_interruptible(target_wait);//唤醒目标线程
    	return;
    }
           当Binder驱动程序分发一个进程间通信请求给一个线程处理时,就会将一个binder_transaction结构体压入到它的事务堆栈中。因此首先从线程thread的事务堆栈中将该binder_transaction结构体取出来。而且保存在变量in_reply_to中。

           binder_transaction结构体in_reply_to成员变量from指向了之前请求与thread进行进程间通信的线程。因此紧接着获取了目标线程target_thread。

           找到目标线程target_thread之后,分别将它的todo队列和wait等待队列作为目标todo队列target_list和目标wait等待队列target_wait。
           然后使用初始化binder_transaction结构体t,增加到目标线程的todo。

    又初始化了binder_work结构体,增加到本线程(service_manager主线程)的todo队列。最后唤醒目标线程。

           我们如果本线程继续运行。运行完成后再运行被唤醒的目标线程。

           service_manager主线程继续运行,运行完binder_transaction,一层一层的返回,终于返回到binder_loop中。继续运行for循环。ioctl映射到binder_ioctl,由于仅仅有read_size大于0,所以运行binder_thread_read,实现例如以下:

          ~/Android//kernel/goldfish/drivers/staging/android

          ----binder.c

    static int
    binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,
    	void  __user *buffer, int size, signed long *consumed, int non_block)
    {
    	void __user *ptr = buffer + *consumed;//起始位置
    	void __user *end = buffer + size;//结束位置
    
    	int ret = 0;
    	int wait_for_proc_work;
    
    	if (*consumed == 0) {
    		if (put_user(BR_NOOP, (uint32_t __user *)ptr))//BR_NOOP存入刚才的局部变量中
    			return -EFAULT;
    		ptr += sizeof(uint32_t);
    	}
    
    retry:
    	wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);//wait_for_proc_work眼下为0,表示线程有要处理的任务
    
    	if (thread->return_error != BR_OK && ptr < end) {
    		..........
    	}
    
    
    	thread->looper |= BINDER_LOOPER_STATE_WAITING;//looper为BINDER_LOOPER_STATE_ENTERED。BINDER_LOOPER_STATE_WAITING
    	if (wait_for_proc_work)//为0
    		proc->ready_threads++;
    	mutex_unlock(&binder_lock);
    	if (wait_for_proc_work) {//为0
    	         ........
    	} else {
    		if (non_block) {//非堵塞要立马返回处理结果
    			if (!binder_has_thread_work(thread))有任务就接下往下运行。没有任务就返回
    				ret = -EAGAIN;
    		} else
    			ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));//有任务不睡眠,继续往下运行
    	}
    	mutex_lock(&binder_lock);
    	if (wait_for_proc_work)//为0
    		proc->ready_threads--;
    	thread->looper &= ~BINDER_LOOPER_STATE_WAITING;//looper为BINDER_LOOPER_STATE_ENTERED
    
    	if (ret)
    		return ret;
    
    	while (1) {
    		case BINDER_WORK_TRANSACTION_COMPLETE: {
    			cmd = BR_TRANSACTION_COMPLETE;
    			if (put_user(cmd, (uint32_t __user *)ptr))//将一个BR_TRANSACTION_COMPLETE返回协议写入到用户提供的缓冲区。

    return -EFAULT; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE ", proc->pid, thread->pid); list_del(&w->entry);//删除todo上的工作项 kfree(w);//释放结构体 binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; } break; } done: *consumed = ptr - buffer;//消耗的大小 .......... return 0; }


         运行完binder_thread_read,返回binder_ioctl。最后返回binder_loop函数。開始运行binder_parse,实现例如以下:

          ~/Android/frameworks/base/cmd/servicemanager

           ----binder.c

    int binder_parse(struct binder_state *bs, struct binder_io *bio,
                     uint32_t *ptr, uint32_t size, binder_handler func)//ptr为BR_TRANSACTION_COMPLETE的指针。size为它的大小
    {
        int r = 1;
        uint32_t *end = ptr + (size / 4);
    
        while (ptr < end) {
            uint32_t cmd = *ptr++;
            .......
            switch(cmd) {//cmd为BR_TRANSACTION_COMPLETE
            ......
             case BR_TRANSACTION_COMPLETE:
                break;
            ......}
        }
    
        return r;
    }
    
         运行完binder_parse后。继续运行binder_loop的for循环,重新睡眠等待直到其所属的进程有新的未处理项为止,停留在以下的代码:

    wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));//睡眠等待,直到有一个新的进程属于未经加工的项目到目前为止

    版权声明:本文博主原创文章,博客,未经同意不得转载。

  • 相关阅读:
    python中写一个求阶乘的函数
    python中filter关键字
    python中写一个求阶乘的函数
    python中如何获取函数文档
    python中lambda关键字创建匿名函数
    固态硬盘中m.2、sata、nvme、ahci、pcie是什么?
    python中lambda关键字定义匿名函数
    python中实现实参可选
    python中map()内置函数
    python中将实参变成可选的
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/4850915.html
Copyright © 2020-2023  润新知