称号:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
非常easy的思路。由于一次能够走1~2步,所以到达第n级能够从第n-1级,也能够从第n-2级。设到达第n级的方法有s(n)种,s(n)=s(n-1)+s(n-2)
一開始准备用递归做。代码例如以下:
class Solution: # @param n, an integer # @return an integer def climbStairs(self, n): if n<=2: return n else: return self.climbStairs(n-1)+self.climbStairs(n-2)
结果在n=35的时候TLE了。这进一步说明递归的算法效率比較低,但从思路上比較简单明了。
于是,转向迭代了,代码例如以下:
class Solution: # @param n, an integer # @return an integer def climbStairs(self, n): if n<=1: return n else: s=[0 for i in range(n)] s[0]=1 #到达第1级 s[1]=2 #到达第2级 for i in range(2,n): s[i]=s[i-1]+s[i-2] return s[n-1] #到达第n级在此引入一个数组s,记录到达第n级的方法,然实际要求的返回值是s[n],数组s中的前n-1项存储值是多余的。
于是进行改进。设s1为走一步到达方法数。s2为走两步到达的方法数。那么到达第n级台阶时,s(n)=s1+s2,当中s1=s(n-1),s2=s(n-2);到达第n+1级台阶时。s(n+1)=s1+s2,当中s1=s(n)=上一步的s1+s2, s2=s(n-1)=上一步的s1,所以仅仅须要记录s1和s2的值。无需记录n个值
class Solution: # @param n, an integer # @return an integer def climbStairs(self, n): if n<=1: return n else: s1=1 s2=1 for i in range(1,n): s=s1+s2 s2=s1 s1=s return s
这应该是比較简单的方法了。受教了。
版权声明:本文博客原创文章。博客,未经同意,不得转载。