kmeans算法思想:
1.从数据集中随机选取k个初始点作为质心。
2.遍历数据集中所有的点,求出每个点到每个质心的距离,找出距离改点最近的质心,并改变此点类型为此质点的类型。
3.重新为每个类别更新其质心。
4.重复2,3,步直到最后两次质心位置相同退出while循环。
补充用python实现的代码,要给python装numpy和matplotlib库,建议直接装anaconda,装好了anaconda默认安装了spyder,里面集成了这两个库,比较方便。
建立kmeans.py文件,编写如下代码:
# -*- coding: utf-8 -*- from numpy import * import matplotlib.pyplot as plt #计算两向量之间的欧式距离,在这里是计算两点之间的距离 def euclDistance(vector1,vector2): return sqrt(sum(power(vector2-vector1,2))) #初始化...... #从原始数据中产生随机的k个数据存入centroids def initCentroids(dataSet,k): numSamples,dim=dataSet.shape#返回dataSet的行和列 centroids=zeros((k,dim))#创建k行dim列的矩阵 for i in range(k): index=int(random.uniform(0,numSamples))#从0到numSamples中随机产生一个数 centroids[i,:]=dataSet[index,:] return centroids def kmeans(dataSet,k):#此算法用到3个数据集,dataSet:n行两列表示原始数据,clusterAssment:n行两列,第一列表示 #原始数据的类型,第二列表示此点到质心的距离,centriods:k行两列表示点群的质心 numSamples=dataSet.shape[0] clusterAssment=mat(zeros((numSamples,2)))#clusterAssment中存放点聚类的类别以及与该类别质心的距离 clusterChanged=True centroids=initCentroids(dataSet,k)#从原始数据中产生随机的k个数据存入centroids,代表k个质心 while clusterChanged: clusterChanged=False for i in xrange(numSamples): minDist=100000.0 minIndex=0 for j in range(k):#从k个质心中选取距离i行这个点最小的一个质心 distance=euclDistance(centroids[j,:],dataSet[i,:]) if distance<minDist: minDist=distance minIndex=j if clusterAssment[i,0]!=minIndex: clusterChanged=True#直到对于所有的原始数据类别都确定,都不再更新,即 #(所有的clusterAssment[i,0]都等于minIndex)。此标志为false,退出while循环 clusterAssment[i,:]=minIndex,minDist**2 for j in range(k):#更新每个点群的质心 pointsInCluster=dataSet[nonzero(clusterAssment[:,0]==j)[0]]#选取j类的所有点存入pointsInCluster,这里nonzero函数是个难点,可以百度一下 centroids[j,:]=mean(pointsInCluster,axis=0)#对pointInCluster中的数据按列求均值 #kmeans算法不包括这里的代码,这里的代码主要是可以打印清楚质心的移动情况 mark=['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] #画聚类后的图 for i in xrange(numSamples): markIndex=int(clusterAssment[i,0]) plt.plot(dataSet[i,0],dataSet[i,1],mark[markIndex],markersize=6) mark=['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb'] #画质心 for i in range(k): plt.plot(centroids[i,0],centroids[i,1],mark[i],markersize=12) plt.show() print "聚类完成" return centroids,clusterAssment def showCluster(dataSet,k,centroids,clusterAssment): numSamples,dim=dataSet.shape if dim!=2: print "Sorry! I can not draw because the dimension of your data is not 2!" return 1 mark=['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] if k>len(mark): print "Sorry! Your k is too large! please contact Zouxy" return 1 #画聚类后的图 for i in xrange(numSamples): markIndex=int(clusterAssment[i,0]) plt.plot(dataSet[i,0],dataSet[i,1],mark[markIndex],markersize=6) mark=['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb'] #画质心 for i in range(k): plt.plot(centroids[i,0],centroids[i,1],mark[i],markersize=12) plt.show()
本程序所用到的数据集为80个点,可以复制到自己的test.txt文档中与此程序放在同一目录下:
1.658985,4.285136 -3.453687,3.424321 4.838138,-1.151539 -5.379713,-3.362104 0.972564,2.924086 -3.567919,1.531611 0.450614,-3.302219 -3.487105,-1.724432 2.668759,1.594842 -3.156485,3.191137 3.165506,-3.999838 -2.786837,-3.099354 4.208187,2.984927 -2.123337,2.943366 0.704199,-0.479481 -0.392370,-3.963704 2.831667,1.574018 -0.790153,3.343144 2.943496,-3.357075 -3.195883,-2.283926 2.336445,2.875106 -1.786345,2.554248 2.190101,-1.906020 -3.403367,-2.778288 1.778124,3.880832 -1.688346,2.230267 2.592976,-2.054368 -4.007257,-3.207066 2.257734,3.387564 -2.679011,0.785119 0.939512,-4.023563 -3.674424,-2.261084 2.046259,2.735279 -3.189470,1.780269 4.372646,-0.822248 -2.579316,-3.497576 1.889034,5.190400 -0.798747,2.185588 2.836520,-2.658556 -3.837877,-3.253815 2.096701,3.886007 -2.709034,2.923887 3.367037,-3.184789 -2.121479,-4.232586 2.329546,3.179764 -3.284816,3.273099 3.091414,-3.815232 -3.762093,-2.432191 3.542056,2.778832 -1.736822,4.241041 2.127073,-2.983680 -4.323818,-3.938116 3.792121,5.135768 -4.786473,3.358547 2.624081,-3.260715 -4.009299,-2.978115 2.493525,1.963710 -2.513661,2.642162 1.864375,-3.176309 -3.171184,-3.572452 2.894220,2.489128 -2.562539,2.884438 3.491078,-3.947487 -2.565729,-2.012114 3.332948,3.983102 -1.616805,3.573188 2.280615,-2.559444 -2.651229,-3.103198 2.321395,3.154987 -1.685703,2.939697 3.031012,-3.620252 -4.599622,-2.185829 4.196223,1.126677 -2.133863,3.093686 4.668892,-2.562705 -2.793241,-2.149706 2.884105,3.043438 -2.967647,2.848696 4.479332,-1.764772 -4.905566,-2.911070
测试文件a.py:
# -*- coding: utf-8 -*- """ Created on Sun Mar 5 12:30:11 2017 @author: chao """ from numpy import * import kmeans ## 读数据 print "step 1: load data..." dataSet = [] fileIn = open('/home/chao/Desktop/python_work/kmeans/test.txt') for line in fileIn.readlines(): lineArr = line.strip().split(',') dataSet.append([float(lineArr[0]), float(lineArr[1])]) #将每一组数据读入列表里面 ## 聚类 print "step 2: clustering..." dataSet = mat(dataSet) #mat函数创建矩阵 k = 4 centroids, clusterAssment = kmeans.kmeans(dataSet, k) ## 画出结果图 print "step 3: show the result..." kmeans.showCluster(dataSet, k, centroids, clusterAssment)
运行结果图: